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Explicit solutions for dynamic portfolio choice in jump-diffusion

models with multiple risky assets and state variables and their

applications

Abstract: This paper studies the optimal portfolio selection problem in jump-diffusion

models where there are potentially a large number assets and/or state variables. More

specifically, we derive closed form solution for the optimal portfolio weights up to solving a

set of ordinary differential equations (ODEs). First, our results generalize Liu (2007) models

by incorporating jumps in both stock returns and state variables. Second, we extend Jin and

Zhang (2012) results by including jumps in state variables. To examine the effects of jump on

an investor’s behavior, we then apply our results to two examples. In the first application, we

propose a novel self-exciting jump intensity process in a double jump model and explicitly

solve the optimal investments in variance swaps. The second application investigate the

impact of jump in stock return on cash-bond-stock mix by revisiting the bond/stock ratio

puzzle in a jump-diffusion model.

JEL Classification: G11

Keywords: Optimal portfolio selection, jump-diffusion model, variance swap, bond/stock

ratio puzzle

1 Introduction

Mounting empirical evidence suggests that the jump risk needs to be captured in asset price

processes and other risk factors, such as volatility processes, in addition to the diffusion risk.

For example, Eraker, Johannes and Polson (2003), Eraker (2004), Chernov, Gallant, Ghysels,

and Tauchen (2003), among others, find strong evidence for co-jumps in volatility and stock

returns, i.e., a big jump in stock prices is likely to be associated with a big jump in volatility.

It is well understood that jump risk in stock prices has a substantial impact on portfolio

selection. Specifically, in a single-stock jump-diffusion model, Liu et al. (2003) find that an

investor is less willing to take leveraged or short positions than in a standard pure-diffusion
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model, due to the investor’s inability to hedge jump risk in stock price through continuous

rebalancing. In an international market setting, Das and Uppal (2004) investigate the effect

of systemic jumps in stock prices on international portfolio selection. They find that jumps

reduce the gain from international diversification and that leveraged portfolios may incur

large losses when jumps occur. Despite the large literature on portfolio choice with jumps in

asset prices, there are only a few studies on asset allocation in the presence of jumps in both

stock prices and state variables. Liu, Longstaff and Pan (2003) solve the optimal portfolio

choice problem in closed form for a model where there is only one risky asset with jumps in

both stock price and volatility. In this paper, we solve the optimal asset allocation problem

in closed form for multi-asset jump-diffusion models under conditions similar to those in

Duffie, Pan and Singleton (2000) and Liu (2007). In contrast to Das and Uppal (2004), an

important feature of our model is that both stock prices and state variables are allowed to

jump. To the best of our knowledge, we are not aware of closed-form solution for dynamic

asset allocation problem in a jump-diffusion model where a risk averse investor faces jumps

in multiple risky assets and state variables. More importantly, the explicit solutions greatly

facilitate economics insight and empirical applications.

As prompted by the seminal work of Merton (1969, 1971) and Samuelson (1969), there is

a large literature on the dynamic portfolio choice problem which has typically been studied

with continuous-time models primarily due to their analytical tractability. For pure-diffusion

models, see Cox and Huang (1989), Detemple, et al. (2003), Liu (2007); for jump-diffusion

models, see Liu, Longstaff and Pan (2003), Das and Uppal (2004), Aı̈t-Sahalia, et al. (2009),

Jin and Zhang (2012), and among many others. As is well-understood, it is a daunting task

to solve the optimal portfolio choice problem especially in an incomplete market with a large

number state variables. For complete pure-diffusion models, based on a refined version of a

method developed in Ocone and Karatzas (1991), Detemple, et al. (2003) solve the portfolio

choice problem in a pure-diffusion model which may include a large number of assets and

state variables with non-affine structures, and they obtain the optimal portfolio strategy by

using Monte Carlo simulation. But one of their key assumptions is the completeness of the

market and their simulation based approaches may be time-consuming in the presence of a

3



large number of assets and/or state variables.

It is well-known that by assuming quadratic conditions in pure-diffusion models, Liu

(2007) explicitly solve the optimal dynamic portfolio choice problem in both complete and

incomplete markets, up to the solution of a set of ordinary differential equations (ODEs).

Specifically, he solves a set of ODEs by guessing the exponential linear form of the indirect

value function without simulation. In contrast, much less is known about conditions which

lead to analytic solution to the optimal portfolio choice in jump-diffusion models especially

when both stock prices and state variables are allowed to jump. As it will be clear, jumps

pose an obstacle to this popular method when state variables are incorporated. The objective

of the present paper is to generalize the ODE-based approach to jump-diffusion models. In

particular, we provide conditions under which the indirect value function in jump-diffusion

models has the exponential linear form. And then, the indirect value function and the

optimal portfolio strategy can be obtained by solving a set of ODEs.

Our paper is closely related to the work of Jin and Zhang (2012) in that they use a

decomposition approach based on HJB equation to solve a portfolio selection problem that

may include a large number of assets and state variables. But their state variables are pure-

diffusion processes and the indirect value function is evaluated by Monte Carlo simulation.

Our paper also relates to the work of Das and Uppal (2004) and Aı̈t-Sahalia, et al. (2009).

These researchers solve the portfolio selection problems for jump-diffusion models. However,

in their models, there is no state variable. In contrast, we obtain closed-form solutions to the

optimal portfolio strategies under jump-diffusion models that can include a large number of

assets and state variables.

Our explicit solutions allow us to solve in a computationally efficient way the dynamic

portfolio selection problem in jump-diffusion models and facilitate insight of an investor’s

behavior when facing jumps in stock returns and/or state variables. For concreteness, we

focus on two applications. The first application is variance swap investment. As is well-

understood, the variance swaps provide good investment opportunities as one can trade

volatility directly to exploit the volatility risk premium instead of indirectly via trading

options. We present a tractable model for solving the optimal portfolio choice problem
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in variance swap market where a power-utility investor trades three variance swaps with

different maturities and a riskfree bond. More specifically, based on the SV2F-PJ-VJ model

in Ait-Sahalia et al. (2015), we propose a new self-exciting process to model the jump

intensity because it seems hard to analytically solve the optimal asset allocation problem

involving variance swap in SV2F-PJ-VJ model. In contrast to the SV2F-PJ-VJ model in

Ait-Sahalia et al. (2015), our model has two attractive features. First, unlike the SV2F-

PJ-VJ model in Ait-Sahalia et al. (2015), given two variance swaps, a third variance swap

is not redundant in the sense that the variance swap rate of third variance swap cannot

be replicated by trading the two given variance swaps. And thus, this makes the third

variance swap valuable for investment. Furthermore, any three variance swaps can span

the linear space generated by three sources of risks: short-run variance, long-run variance

and jump. Second, we obtain closed-form solution to the optimal investment in variance

swaps. In calibration exercises, our empirical results show that it is always optimal to take

long positions in the medium-term variance swap contracts and short positions in both the

short-term and the long-term contracts. This is in stark contrast to the trading positions in

the two variance swap contracts in the two-factor pure-diffusion model examined in Egloff,

Leippold and Wu (2010) where an investor can take either long or short position in each

contract depending on the model parameters. As demonstrated in Zhou and Zhu (2012),

the cost of using one-factor Heston stochastic volatility model can be as high as 70%. This

brings us to ask what economics cost is by ignoring jumps in volatility. Surprisingly, we find

in all examples tested that if our double jump model is the true model, then the strategy

obtained from the pure-diffusion model in Egloff, Leippold and Wu (2010) always violate the

jump-induced constraint on jump exposure and thus leads to 100 percent wealth equivalent

loss by following the suboptimal strategy. In short, our results along with those in Zhou

and Zhu (2012) indicate the serious consequence of model misspecification for variance swap

investment.

Application 2 examines how jumps in stock return affects the optimal cash-bond-stock

mix in a dynamic asset allocation model where an investor can trade one stock, two bonds

and cash. We revisit the asset allocation puzzle raised in Canner et al. (1997). Namely, the
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empirical evidence documented in their paper shows that strategic asset allocation advices

tend to recommend a higher bond/stock ratio for a more risk averse investor. Several authors

have attempted to explain the rationality of the puzzle. For instance, Bajeux-Besnainou et

al. (2001) and Brennan and Xia (2000) relate the puzzle to a hedging component to a

stochastic interest rate and provide an elegant solution to the asset allocation puzzle. More

specifically, as pointed by Lioui (2007), the puzzle can be resolved under the assumption

that one or several bonds can perfectly hedge the risk from the interest rate and the market

price of risk. This approach is extended by Lioui (2007), which demonstrates that the puzzle

may be still a puzzle for an bond market where the above hedging assumption is invalid. All

of these studies assume that short term interest rate and stock return follow pure diffusion

processes. Our framework generalizes these studies by incorporating jumps in stock returns

and examining the roles of risk aversion in determining the optimal cash-bond-stock mix. In

particular, we show that unlike the pure-diffusion models in Bajeux-Besnainou et al. (2001),

Brennan and Xia (2000) and Lioui (2007), there is no clear-cut answer to the bond/stock

ratio puzzle in a jump-diffusion model despite the aforementioned hedging assumption. This

finding strengthens the claim made by Lioui (2007) that the asset allocation puzzle is still a

puzzle.

The rest of the paper is organized as follows. In the next section, we present the frame-

work for Merton’s dynamic portfolio selection problem in jump-diffusion models. Then, we

present conditions in the the jump-diffusion models under which we explicitly solve indirect

value function and the optimal portfolio strategy in terms of solution to a set of ODEs.

In Section 3, we propose a new self-exciting process for jump intensity in a double jump-

diffusion model and explicitly solve the optimal portfolio weights in a market consisting of

one riskfree bond and three variance swaps with different maturities. Finally, in Section 4,

we derive closed-form solution to the optimal cash-bond-stock mix and especially investigate

how jump risk in stock return affect bond/stock ratio. We conclude in Section 5. All proofs

are collected in Appendix.

6



2 Merton’s portfolio choice problem

In this section we formulate a model of incomplete financial markets in a continuous time

economy where asset prices and state variables follow a multidimensional jump-diffusion

process on the fixed time horizon [0, T ], 0 < T < ∞. We consider a complete probability

space (Ω,F , P ), where Ω is the set of states of nature with generic element ω, F is the

σ-algebra of observable events and P is a probability measure on (Ω,F).

We use a l-dimensional vector Xt = (X1t, ..., Xlt)
⊤ to denote the state variables of the

economy where the convention ⊤ stands for the transpose of a vector or a matrix. The state

variables Xt may include stochastic volatility and stochastic interest rate as its components.

We assume that state variables Xt follow a jump-diffusion process

dXt = bx(Xt)dt+ σx(Xt)dB
X(t) + σx

J(Xt)(Y
x • dN(t))

where bx(Xt) is an l-dimensional vector function, σx(Xt) is an l × l matrix function of Xt,

and σx
J(Xt) is an l×m matrix function of Xt, respectively. It should be noted that unlike Liu

(2006) and Jin and Zhang (2012), the above specification of Xt includes jumps in state vari-

ables. For instance, we can incorporate a jump in volatility process. By letting Y x = 0, our

jump-diffusion model reduces to their pure-diffusion models. BX(t) = (BX
1 (t), ..., BX

l (t))⊤ is

a l-dimensional standard Brownian motion; N(t) = (N1(t), ..., Nm(t))
⊤ is an m-dimensional

multivariate Poisson process with Nk(t) denoting the number of type k jumps up to time t;

and Y x = (Y x
1 , ..., Y

x
m)

⊤ with Y x
k denoting the amplitude of the type k jump conditional on

the occurrence of the k-th jump. For any two n-dimensional vectors x = (x1, ..., xn)
⊤ and

y = (y1, ..., yn)
⊤, we denote the component-wise multiplication as x • y = (x1y1, ..., xnyn)

⊤.

The uncertainty of the economy is also generated by a d-dimensional standard Brownian

motion BS(t) = (BS
1 (t), ..., B

S
d (t))

⊤, which drives stock prices defined below. Assume BS(t)

and BX(t) are correlated and E[dBX(t)d(BS(t))⊤] = ρtdt, for some l×d matrix ρt. The flow

of information in the economy is given by the natural filtration, i.e., the right-continuous and

augmented filtration {Ft}t∈[0,T ] = {FS
t ∨FX

t ∨FN
t , t ∈ [0, T ]}, where FS

t = σ(BS(s); 0 ≤ s ≤
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t), FX
t = σ(BX(s); 0 ≤ s ≤ t) and FN

t = σ(N(s); 0 ≤ s ≤ t). We suppose that observable

events are eventually known, i.e., F = FT . For illustrative purposes1, we assume that Nk

admits stochastic intensity λk(Xt), where λk(Xt) represents the rate of the jump process at

time t.

We are now in a position to describe asset price processes. The market considered in

this paper includes n+1 assets traded continuously on the time horizon [0, T ]. One of these

assets, risk-free, has a price S0(t) which evolves according to the differential equation

dS0(t) = S0(t)r(Xt)dt, S0(0) = 1. (1)

The remaining n assets, called stocks, are risky; their prices are modeled by the linear

stochastic differential equation

dSi(t)

Si(t−)
= bi(Xt)dt+ σb

i (Xt)dB
S(t) + σq

i (Xt)(Y
s • dNS(t))

where i = 1, ..., n, NS(t) = (N1(t), ..., Nn−d(t))
⊤, and Y s = (Y s

1 , ..., Y
s
n−d)

⊤, with Y s
k denoting

the amplitude of the type k jump conditional on the occurrence of the k-th jump. Here σb
i (Xt)

is the d-dimensional diffusion coefficient row vector and σq
i (Xt) is the (n − d)-dimensional

jump coefficient row vector. In particular, the Brownian motions represent frequent small

movements in stock prices, while the jump processes represent infrequent large shocks to the

market. Assuming n− d ≤ m, the jumps NS(t) can be regarded as common jumps in stock

returns and state variables.

We now turn to the portfolio selection problem. In this paper, we focus on the Mer-

ton’s problem of maximizing the expected utility from the terminal wealth. For analytic

tractability, we consider the constant relative risk aversion (CRRA) utility function given by

U(x) =


x1−γ

1−γ
, ∀x > 0;

−∞, ∀x ≤ 0,
(2)

1Our results can be extended to infinite activity jump processes.
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where γ is the relative risk aversion (RRA) coefficient. Specifically, we consider an investor

with the utility function U(x) and endowed with some initial wealth w0, which is invested

in the above-mentioned n+1 assets. Let π(t) = (π1(t), ..., πn(t))
⊤ denote a trading strategy,

where πi(t) is the proportion of total wealth invested in the i-th risky asset held at time

t and Ft-predictable. Any portfolio policy π(t) has an associated wealth process Wt that

evolves as

Wt = W0 +

∫ t

0

r(s)Wsds+

∫ t

0

Wsπ
⊤(s)(b(s)− r(s)1n)ds

+

∫ t

0

Wsπ
⊤(s)Σb(Xs)dB

S(s) +

∫ t

0

Ws−π
⊤(s−)Σq(Xs)(Y

s • dNS(s))

where b(t) = (b1(Xt), ..., bn(Xt))
⊤, Σb(Xt) is an n × d matrix with σb

i being its i-th row,

Σq(Xt) is the n× (n− d) matrix, with σq
i being its i-th row. Here we use 1n to denote the

n-dimensional column vector of ones. A portfolio rule π(t) is said to be admissible if the

corresponding wealth process satisfies Wt ≥ 0 almost surely. We use A(w0) to denote the

set of all admissible trading strategies. Then, the traditional Merton’s problem is that the

investor attempts to maximize the following quantity

u(w0) = max
π∈A(w0)

J(w0) = E [U(WT )] .

For illustrative purposes, we assume n − d = m because it is straightforward to extend

our results to the case: n − d < m. Following Merton (1971), using the standard approach

to stochastic control and an appropriate Ito’s lemma for jump-diffusion processes, we can

derive the optimal portfolio weights, π, and the corresponding indirect value function, J , of

the investor’s problem following the HJB equation below:

0 = max
π

{
Jt +

1

2
W 2π⊤ΣbΣ

⊤
b πJWW +W [π⊤(b(t)− r1m) + r]JW (3)

+bx(t)JX +Wπ⊤Σbρ
⊤
t σ

x⊤(t)JWX +
1

2
Tr(σx(t)σx⊤(t)JXX⊤)

+
n−d∑
k=1

E[J(W +Wπ⊤ΣqkY
s
k , Y

x
k )− J(W )]

}
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where Σqk denotes the k-th column of Σq. The above HJB equation nests the HJB equation

(3) for pure-diffusion model in Liu (2006) as a special case by letting n − d = 0. It is well-

known that in the pure-diffusion model in Liu (2006), the indirect value function J(t,W,Xt)

is conjectured to have the form: J(t,W,Xt) = W 1−γ

1−γ

[
eA(t)+B(t)Xt

]γ
, where A(t) is a scalar

and B(t) is a 1 × l vector. Then, under the quadratic conditions, a set of ODEs for the

functions A(t) and B(t) is obtained by substituting the function J into the HJB equation

(3). As shown below, the argument in Liu (2006) does not trivially apply to jump-diffusion

models. More specifically, compared with the HJB equation (3) in Liu (2006) for pure-

diffusion model, the last term in the above HJB equation is a new term due to the presence

of jumps. More importantly, this jump term creates new difficulties for closed-form solutions

to the optimal portfolio choice problem in the jump-diffusion models. To illustrate these

difficulties specific to the jump-diffusion model, we consider a simple case where there are

no jumps in the state variables Xt by letting Y x
k = 0, k = 1, ..., n − d. By following the

literature, we substitute the indirect value function J(t,W,Xt) =
W 1−γ

1−γ
(f(t,Xt))

γ into (3)

and get the following form for the last term:

n−d∑
k=1

E[J(W +Wπ⊤ΣqkY
s
k , Y

x
k )− J(W )]

=
W 1−γ

1− γ
(f(t,Xt))

γ
m∑
k=1

λk(Xt)E[(1 + π⊤ΣqkY
s
k )

1−γ − 1].

As is well-understood from, for instance, Liu (2006), in order to get an explicit solution for

the indirect value function J(t,W,Xt) of the form J(t,W,Xt) = W 1−γ

1−γ

[
eA(t)+B(t)Xt

]γ
, the

term E[(1+ π⊤ΣqkY
s
k )

1−γ] should be an affine function of the state variables Xt. This term,

however, is hard to be an affine function of the state variables Xt unless the optimal jump

exposure π⊤Σqk is a deterministic function of time t. The reason for this is that the function

x1−γ is generally not an affine function. Based on this observation and inspired by the results

in Liu (2006) and the result of decomposition of optimal portfolio weights in Jin and Zhang

(2012), we are able to specify an affine model2, which leads to ODEs for A(t) and B(t) given

2Here, for expositional purposes, we consider affine models only as it is straightforward to generalize our
results to quadratic processes defined in Liu (2006).
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in Proposition 1 below.

To this purpose, we now introduce more notations. We let ak = E(Y s
k ), k = 1, ..., n− d.

We assume the matrix Σ = [Σb,Σq] is invertible. The market price of risk is represented by

 θb

θq

 = Σ−1(b(t)− r1n + Σq(λ • a)), (4)

where λ•a = (λ1a1, ..., λn−dan−d)
⊤, θb = (θb1, ..., θ

b
d)

⊤ and θq = (θq1, ..., θ
q
n−d)

⊤. As will become

clear in next sections, θbi is the risk premium for the Brownian motion BS
i , i = 1, ..., d, and

θqk represents the risk premium for the jump NS
k , k = 1, ..., n − d, in the stock returns. We

now make the following assumptions:

bx(Xt) = k −KX,

σxσx⊤ = h0 + h1 ·X,

r = δ0 + δ⊤1 X,

θb⊤θb = H0 +H⊤
1 X,

σxρtθ
b = g0 + g1X,

σxρtρ
⊤
t σ

x⊤ − σxσx⊤ = l0 + l1 ·X,

λ = λ0 + λ1X,

θqk = θ0kλk, k = 1, ..., n− d,

where k, δ1, H1 and g0 are l× 1 constant vectors, K,h0, g1 and l0 are l× l constant matrices,

δ0, H0 and θ0k are constants, λ0 is a (n− d)× 1 constant vector, λ1 is a (n− d)× l constant

matrix, h1 = hi1jk, i, j, k = 1, ..., l and l1 = li1jk, i, j, k = 1, ..., l are constant tensors with three

indices (one upper index and two lower indices). In particular, h1 ·X is a l× l matrix whose

(j, k) element is

(h1 ·X)jk =
l∑

i=1

hi1jkXit.
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The l× l matrix l1 ·X is defined in exactly the same manner. The above assumptions except

the last two are similar to those made in Liu (2007); the last two assumptions on jump

intensity and jump premium are also standard ones made in literature, in particular, the

last assumption says that the jump risk premium for the k-th jump is proportional to its

intensity.

As demonstrated in Liu and Pan (2003), Zhou (2012), Jin and Zhang (2012), it seems

more convenient to first solve the optimal diffusion exposure π̃∗
b = (π⊤Σb)

∗ and jump exposure

π̃∗
q = (π⊤Σb)

∗, and then find the optimal portfolio weights according to the formula in

Proposition 2 given below. For this, let us define the following vector

D = (D1, ..., Dn−d),

where

Dk = (1− γ)π̃∗
qk(θ

0
k − ak) + EP

[(
π̃∗
qkY

s
k + 1

)1−γ
eγBσx

JkY
x
k − 1

]
, k = 1, ..., n− d,

where π̃∗
qk is the optimal exposure to the k-th jump and is determined in Proposition 2 below.

Proposition 1 Under the above assumptions, we have the following results:

J(t,Wt, Xt) =
W 1−γ

t

1− γ
[f(t,Xt)]

γ =
W 1−γ

1− γ

[
eA(t)+B(t)Xt

]γ
(5)

where the functions A(t) and B(t) satisfy the following equations:

dA

dt
+

(
k +

1− γ

γ
g0

)⊤

B⊤ +
1

2
B[h0 + (1− γ)l0]B

⊤

+
1− γ

2γ2
H0 +

1− γ

γ
δ0 + λ⊤0D

⊤ = 0,

dB

dt
+

(
−K +

1− γ

γ
g1

)⊤

B⊤ +
1

2
B[h1 + (1− γ)l1]B

⊤

+
1− γ

2γ2
H1 +

1− γ

γ
δ1 + λ⊤1D

⊤ = 0
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Proof. See Appendix A.

The following result presents the optimal portfolio weights.

Proposition 2 The optimal portfolio weight π∗ = (π∗
1, ..., π

∗
n) is given by

π∗ =
(
π̃∗
b1, ..., π̃

∗
bd, π̃

∗
q1, ..., π̃

∗
q(n−d)

)
Σ−1 (6)

where

(π̃∗
b1, ..., π̃

∗
bd)

⊤ =
θ̃b

γ
+ ρtσ

x⊤B⊤(t)

and π̃∗
qk solves the following optimization problem:

sup
π̃qk∈Fk

π̃qk(θ
0
k − ak) +

1

1− γ

∫
Ak

[(1 + π̃qkz)]
1−γΦk(dz) (7)

for k = 1, ..., n− d, where Ak denotes the support of k-th jump size Y s
k and Fk is the set of

feasible k-th jump exposures satisfying the no-bankruptcy condition, namely, Fk = {x|x · y >

−1, ∀y ∈ Ak}.

Proof. See Appendix A.

The objective function in optimization problem (7) does not include the state variables

Xt and thus, for each k, the optimal jump exposure π̃∗
qk is deterministic. This justifies the

conjectured exponential linear form of the indirect value function. It is worth mentioning

that despite the deterministic jump exposure π̃∗
qk, the optimal portfolio weights π∗ is still

dependent of the state variables Xt through the optimal diffusion exposures (π̃∗
b1, ..., π̃

∗
bd) and

the matrix Σ. For example, considering the quadratic process for the state variables Xt

in Liu (2007), the optimal diffusion exposures (π̃∗
b1, ..., π̃

∗
bd) is a linear function of the state

variables and thus, from (6), the optimal portfolio weights π∗ is linear in the state variables

too if Σ is a constant matrix. This state-dependent portfolio strategy reflects the investor’s

market timing behavior.

3 Dynamic asset allocation for variance swaps

In order to exploit variance risk premium and hedge variance risk, the variance swap con-

tract has become the most actively traded variance-related derivative security due to its
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direct exposure to volatility and provide good investment opportunity 3. Despite the grow-

ing importance of trading variance swap, surprisingly, there are only few papers available

studying dynamic portfolio choice problem incorporating variance swap. For example, in a

two-factor affine pure-diffusion model, Egloff, Leippold and Wu (2010) explicitly solves the

optimal dynamic portfolio choice problem and finds that it is optimal for an investor to take

a short position in a short-term variance swap and a long position in a long-term variance

swap. In contrast, Filipovié, Gourier and Mancini (2015) show that an investor optimally

takes a short position in a long-term variance swap to earn the significant negative variance

risk premium and a long position in a short-term variance swap to hedge the volatility risk.

In fact, Filipovié, Gourier and Mancini (2015) study the optimal portfolio choice problem

involving variance swap in quadratic pure-diffusion variance swap models and hence closed-

form solution as in Egloff, Leippold and Wu (2010) is unavailable. In particular, in the

pure-diffusion models of both Egloff, Leippold and Wu (2010) and Filipovié, Gourier and

Mancini (2015), only two variance swaps are incorporated in the portfolio choice problem

because any two variance swaps can span the two sources of risk in two-factor variance swap

rate dynamics and thus a third variance swap is redundant.

As widely documented strong empirical evidence, see, for example, Broadie, Chernov

and Johannes (2007), Todorov (2009), Bandi and Reno (2015), suggests that both stock

return and volatility exhibit jumps and jumps play a key role in explaining the observed

risk premium, Aı̈t-Sahalia, Karaman and Mancini (2015) extend the two-factor model in

Egloff, Leippold and Wu (2010) by incorporating jumps in both stock return and volatility.

Interestingly, like the aforementioned pure-diffusion models, given two traded variance swaps,

a third variance swap is still redundant and thus variance swaps fail to span the linear space

generated by three sources of risk (two diffusions and one jump). The reason for this is that

in the “SV2F-PJ-VJ” model in Aı̈t-Sahalia, Karaman and Mancini (2015), the intensity of

jump in variance process is an affine function of variance.4 As a result, given any two variance

3As indicated by Table 7 in Egloff, Leippold and Wu (2010), the investment strategies involving variance
swap have a Sharpe ratio of at least 1.20 while the Sharpe ratio of S&P is at most 0.5.

4This modeling also appears to make it hard to obtain an analytic solution to the optimal portfolio choice
problem incorporating variance swap.
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swaps available for trading, an investor does not benefit from including a third variance swap

in her portfolio. Importantly, the redundance makes it hard to solve the optimal variance

swap investment problem in closed form.

The above observations bring us to ask the following questions: If the link between the

jump intensity and variance in Aı̈t-Sahalia, Karaman and Mancini (2015) is invalid, are

two variance swaps sufficient to span the variance swap rate process? If not, what does

an optimal strategy involving three variance swaps look like as opposed to the short-long

rule in Egloff, Leippold and Wu (2010) In the meantime, what is the benefit from trading

three variance swaps? To address these questions, the primary objective of this section is

to study optimal investment in variance swap in double jump models. More specifically, by

virtue of the results in Propositions 1 and 2, we exploit the problem of optimal variance

swap investment in a analytically tractable double jump model which modifies the jump

intensity of the “SV2F-PJ-VJ” model in Aı̈t-Sahalia, Karaman and Mancini (2015). First,

a general model in the context of Section 2 is specified, and its properties are discussed and

numerically compared to other models that are widely employed in the literature. Finally,

analytic solutions to the problem of dynamic asset allocation for variance swaps are provided

and their performance is examined in the numerical examples. Hence, our study contributes

to the literature by enhancing our understanding of variance swap trading when both stock

price and volatility can jump.

3.1 Model Specification and Properties

For analytic tractability, we adopt the popular double jump model used by Aı̈t-Sahalia,

Karaman and Mancini (2015), apart from the specification for the intensity of the counting

process. That is, we assume that the stock price, volatility and its long-run mean under a

risk-neutral measure Q are given as follows:

dSt

St−
= (r − δ)dt+

√
(1− ρ2)vtdW

Q
1t + ρ

√
vtdW

Q
2t + (exp(Js,Q

t )− 1)dNt − gQλtdt,

dvt = κQv (mt − vt)dt+ σv
√
vtdW

Q
2t + Jv,Q

t dNt

dmt = κQm(θ
Q
m −mt)dt+ σm

√
mtdW

Q
3t .

(8)
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As in Aı̈t-Sahalia, Karaman and Mancini (2015), we specify the market price of risks for the

Brownian motions by γi (i = 1, 2, 3) in the following way:

Λ⊤
t = [γ1

√
(1− ρ2)vt, γ2

√
vt, γ3

√
mt],

Then, under the objective probability P , the stock price and variance dynamics can be

represented as follows:

dSt

St−
= µtdt+

√
(1− ρ2)vtdW

P
1t + ρ

√
vtdW

P
2t + (exp(Js,P

t )− 1)dNt − gPλtdt,

dvt = κPv (mtκ
Q
v /κ

P
v − vt)dt+ σv

√
vtdW

P
2t + Jv,P

t dNt

dmt = κPm(θ
P
m −mt)dt+ σm

√
mtdW

P
3t ,

(9)

where µt = r − δ + γ1(1 − ρ2)vt + γ2ρvt + (gP − gQ)λt, κ
P
v = κQv − γ2σv, κ

P
m = κQm − γ3σm,

and θPm = θQmκ
Q
m/κ

P
m, while r is the risk free rate, and δ is the dividend yield, both taken

to be constant for simplicity. The correlation parameter ρ is used to capture the so-called

leverage effect between stock returns and variance changes. The three Brownian motions,

WQ
it , i = 1, 2, 3, are uncorrelated.5

The dynamics of the spot variance of the price, vt, is driven by a two-factor model, while

the speed of mean revision is κP under P (κQ under Q accordingly). The long-term mean

of the variance is governed by the pure-diffusion process mt that has a similar specification

with vt but equipped with a parameter triple of κPm (κQm), θ
P
m (θQm) and σm, respectively. As

a result, the process vt presents the fast mean reverting and volatile pattern and captures

sudden movements in variance with the jump process, while the process mt has no jump and

is less volatile and persistent and characterizes the central tendency of variance.

Meanwhile, the jump size in the stock price, Js,Q, is independent of both Brownian and

jump components, and is assumed to follow a normal distribution with mean µQ
j and variance

σ2
j so that gQ = exp(µQ

j + σ2
j/2)− 1. Similarly, we may have gP = exp(µP

j + σ2
j/2)− 1 under

5The variant of the specifications in Model (8) and (9) is widely used in the literature (see Bakshi, Cao
and Chen (1997), Chernov and Ghysels (2000), Bates (2000,2006), Pan (2002), Eraker, Johannes and Polson
(2003), Broadie, Chernov and Johannes (2007), Egloff, Leippold and Wu (2010) and Todorov (2009) and
references therein).
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the objective probability measure P . However, the jump size in the spot variance, Jv,Q,

is positive. It is independent of Brownian motions and the jump component in the stock

price, and follows an exponential distribution with parameter µQ
v , i.e., E

Q[Jv,Q] = µQ
v , and

so is the jump size Jv,P . This specification thus captures sudden upward movement of vt.

Furthermore, the two-factor model studied by Pan (2002) that allows for jumps only in stock

price can be obtained if both µP
j and µQ

j are set as zero (e.g., µP
j = µQ

j ≡ 0).

We now turn to modeling jump intensity under the measures P and Q, respectively.

Empirical studies suggest that the jump intensity of asset prices is stochastic and clustered

in time (see Bates (2006) and Aı̈t-Sahalia, Cacho-Diaz and Laeven (2010)). We then assume

that the jump intensity λt of the counting process Nt under the measure Q follows a self-

exciting process as follows:

dλt = α(λ∞ − λt)dt+ β0J
v,Q
t dNt, (10)

where α, λ∞ and β0 > 0.6 Unlike the the specification of λt in Aı̈t-Sahalia, Karaman and

Mancini (2015) in the form of λt = λ0 + λ1vt, implying that the jump intensity is uniquely

determined by volatility, Equation (10) suggests that a jump in either price or variance may

cause the intensities to jump up, governing by β0 and the jump intensity decays exponentially

back towards a level λ∞ at speed α. It partially disentangles the jump intensity from volatility

in the sense that λt is proportional to vt when vt has large movements driven by the jump

instead of small one caused by the diffusion.

More importantly, our model is especially tractable in that we solve the optimal portfolio

choice problem with variance swap in closed form7. Although the specification in Aı̈t-Sahalia,

Karaman and Mancini (2015) allows for more jumps to occur during volatile periods with

the intensity bounded by a positive constant (λ0 > 0), it is subject to the underestimation

of volatility in the long run. That is, the mean-reverting nature of volatility suggests that

6Accordingly, its dynamics under the measure P can be represented as dλt = α(λ∞ −λt)dt+β0J
v,P
t dNt.

7Our model is also tractable for pricing European options as it is one of affine models developed by Duffie,
Pan and Singleton (2000). More recently, Fulop, Li and Yu (2015) propose a self-exciting asset pricing model
that takes into account co-jumps between prices and volatility and self-exciting jump clustering. They find
that the self-exciting jump intensity has become more important since the onset of the 2008 global financial
crisis and illustrate good model performance for the S&P 500 index option data.
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the long-term expected volatility declines over time, implying that the intensity of jumps is

also a decreasing function of time. This in fact imposes an unnecessary restriction on the

dynamics of jump intensity λt.

3.2 Term Structure of Variance Swap and Risk Premia

Similar to the equation (9) in Aı̈t-Sahalia, Karaman and Mancini (2015), the variance swap

rate is given by

V St,t+τ =
1

τ

∫ t+τ

t

vudu+
1

τ

Nt+τ∑
u=Nt

(Js
u)

2 = v̄Qt,t+τ + EQ
t [(J

s)2]λ̄Qt,t+τ ,

where EQ
t [(J

s,Q)2] = (µQ
j )

2 + σ2
j ,

EQ
t [λs] =

αλ∞
(α− βQ)

[
1− e−(α−βQ)(s−t)

]
+ λte

−(α−βQ)(s−t),

with βQ = β0E
Q
t [J

v,Q
t ].

λ̄Qt,t+τ =
1

τ

∫ t+τ

t

EQ
t [λs]ds =

αλ∞
(α− βQ)

[
1− 1

τ(α− βQ)
(1− e−(α−βQ)τ )

]
+

λt
τ(α− βQ)

(1− e−(α−βQ)τ ).

Likewise,

EQ
t [ms] = θQm

[
1− e−κQ

m(s−t)
]
+mte

−κQ
m(s−t),
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and

EQ
t [vs] = θQm

[
1 +

κQm
κQv − κQm

e−κQ
v (s−t) − κQv

κQv − κQm
e−κQ

m(s−t)

]
+

αµQ
v λ∞

κQv (α− βQ)

[
1 +

α− βQ

κQv − (α− βQ)
e−κQ

v (s−t) − κQv
κQv − (α− βQ)

e−(α−βQ)(s−t)

]
+

κQv
κQv − κQm

[
e−κQ

m(s−t) − e−κQ
v (s−t)

]
mt

+
µQ
v

κQv − (α− βQ)

[
e−(α−β)(s−t) − e−κQ

v (s−t)
]
λt

+ e−κQ
v (s−t)vt.

Thus, under the risk neutral probability Q, the rate of a variance swap contract with the life

time of τ , staring from time t, can be specified as follows:

V St,t+τ =
1

τ

∫ t+τ

t

EQ
t [vs]ds+

1

τ
EQ

t [(J
s)2]

∫ t+τ

t

EQ
t [λs]ds

= ϕθ(τ)θ
Q
m + ϕ0

λ(τ)λ∞ + ϕv(τ)vt + ϕm(τ)mt + ϕλ(τ)λt,

where

ϕθ(τ) = 1 +
κQm

κQv τ(κ
Q
v − κQm)

[
1− e−κQ

v τ
]
− κQv
κQmτ(κ

Q
v − κQm)

[
1− e−κQ

mτ
]
,

ϕ0
λ(τ) =

αµQ
v

κQv (α− βQ)

[
1 +

(α− βQ)(1− e−κQ
v τ )

κQv τ(κ
Q
v − (α− βQ))

− κQv (1− e−(α−βQ)τ )

(α− βQ)τ(κQv − (α− βQ))

]

+
αEQ

t [(J
s,Q)2]

(α− βQ)

[
1− 1

τ(α− βQ)
(1− e−(α−βQ)τ )

]
,

ϕv(τ) =
1

κQv τ
(1− e−κQ

v τ ),

ϕm(τ) =
κQv

τ(κQv − κQm)

[
1− e−κQ

mτ

κQm
− 1− e−κQ

v τ

κQv

]
,

ϕλ(τ) =
µQ
v

τ(κQv − (α− βQ))

[
1− e−(α−βQ)τ

α− βQ
− 1− e−κQ

v τ

κQv

]
+
EQ

t [(J
s,Q)2](1− e−(α−βQ)τ )

τ(α− βQ)
.

(11)

Note that given τ , the variance swap rate V St,t+τ is a martingale under Q-measure.
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Hence, under the objective probability P , V St,t+τ follows the equation below

dV St,t+τ = [ϕv(τ)σvγ2vt + ϕm(τ)σmγ3mt − (ϕv(τ) + β0ϕλ(τ))µ
Q
v λt]dt

+ ϕv(τ)σv
√
vtdW

P
2t + ϕm(τ)σm

√
mtdW

P
3t + (ϕv(τ) + β0ϕλ(τ))J

v,P
t dNt

(12)

3.3 Optimal Variance Swap Allocation

Before examining empirical performance of our model, we solve the optimal portfolio choice

problem with variance swap in a model where a risk averse investor can only trade three

variance swap and a money market account. 8 In particular, we will show the reason that a

third variance swap is redundant in the model of Aı̈t-Sahalia, Karaman and Mancini (2015).

As in Egloff, Leippold and Wu (2010), Jin and Zhang (2012), we assume that at time t, the

investor initiates three new variance swap contracts with the delivery prices set to be the

prevailing variance swap rates K1 = V St,t+τ1 , K2 = V St,t+τ2 and K3 = V St,t+τ3 . Thus her

wealth Wt can be written as

Wt = WM
t +W1t(V St,t+τ1 −K1) +W2t(V St,t+τ2 −K2) +W3t(V St,t+τ3 −K3),

8The reason for excluding the stock is that incorporating the stock will introduce two more sources of
risk: the diffusion W1t and the jump Nt with jump size Js,P

t . In essence, the jump in stock price and the
jump in volatility are considered as two different jumps although they occur simultaneously because the two
jumps have different random jump sizes. As a result, in order to deliver closed-form solution to the optimal
portfolio choice problem when the investor can invest in the stock, we need to incorporate a new asset in
addition to the stock. The price of the new asset is driven by the diffusion W1t. For this, we can extend
the stock price model in Section 2.3 of Liu (2007) by incorporating jump in the stock price. Specifically, the
stock price is

dSt

St−
= (rt + γ2ρvt + γ1rt)dt+ σr

√
rtdW

P
1t + ρ

√
vtdW

P
2t + (exp(Js,P

t )− 1)dNt − gPλtdt,

where rt is the short rate. And then the investor is allowed to trade a zero-coupon bond, the
stock and three variance swaps. In this model, the variance swap rate includes a new term Rt =

EQ
[
exp

(
−
∫ T

t
rsds

) ∫ T

t
rsds

]
. The dynamics of the expectation can be explicitly derived by using the

methods in Duffie, Pan and Singleton (2000) for an affine short rate process. In particular, by adopting the
Vasicek model for the short rate rt, then we can solve the optimal portfolio choice problem in the ODE-
based closed form. If rt is modeled by the CIR process, then, unlike the previous case, the optimal portfolio
choice problem can be solved by combining the simulation-based method in Jin and Zhang (2012) and the
ODE-based approach in the present paper. A noteworthy feature of the new model is that we can study how
the interest rate affect the variance swap rate due to the presence of the term Rt and the investor’s demands
for the stock, the bond and variance swap. Allowing the investor to access both stock and bond in addition
to variance swap will certainly enrich the analysis. We leave this extension as future research.
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where WM
t denotes the amount of money invested in the money market account, W1t, W2t

andW3t denote the dollar notional amount invested in the three variance swaps, respectively.

As a result, we can write the wealth dynamics as

dWt

Wt

= rtdt+ w1tdV St,t+τ1 + w2tdV St,t+τ2 + w3tdV St,t+τ3 (13)

where w1t, w2t and w2t denote the fractions of wealth in the three variance swaps, respectively.

Plugging the equations for variance swaps into Equation (13), we can recast the wealth

dynamics as

dWt

Wt

= rtdt+ w1t[ϕv(τ1)σvγ2vt + ϕm(τ1)σmγ3mt − (ϕv(τ1) + β0ϕλ(τ1))µ
Q
v λt]dt

+w2t[ϕv(τ2)σvγ2vt + ϕm(τ2)σmγ3mt − (ϕv(τ2) + β0ϕλ(τ2))µ
Q
v λt]dt

+w3t[ϕv(τ3)σvγ2vt + ϕm(τ3)σmγ3mt − (ϕv(τ3) + β0ϕλ(τ3))µ
Q
v λt]dt

+w1t[ϕv(τ1)σv
√
vtdW

P
2t + ϕm(τ1)σm

√
mtdW

P
3t + (ϕv(τ1) + β0ϕλ(τ1))J

v,P
t dNt]

+w2t[ϕv(τ2)σv
√
vtdW

P
2t + ϕm(τ2)σm

√
mtdW

P
3t + (ϕv(τ2) + β0ϕλ(τ2))J

v,P
t dNt]

+w3t[ϕv(τ3)σv
√
vtdW

P
2t + ϕm(τ3)σm

√
mtdW

P
3t + (ϕv(τ3) + β0ϕλ(τ3))J

v,P
t dNt].

Next result gives the indirect value function.

Proposition 3 Under the above assumptions, we have the following result:

J(t,Wt, Xt) =
W 1−γ

t

1− γ
[f(t,Xt)]

γ =
W 1−γ

1− γ

[
eA(t)+B1(t)vt+B2(t)mt+B3(t)λt

]γ
(14)

where the functions A(t), B(t) = (B1(t), B2(t))
⊤ and B3(t) satisfy the following equations:

dA

dt
+ κPmθ

P
mB2 + αλ∞B3 +

1− γ

γ
r = 0,

dB1

dt
−

(
κPv − 1− γ

γ
σvγ2

)
B1 +

1

2
σ2
vB

2
1 +

1− γ

2γ2
γ22 = 0,

dB2

dt
+ κQv B1 −

(
κPm − 1− γ

γ
σmγ3

)
B2 +

1

2
σ2
mB

2
2 +

1− γ

2γ2
γ23 = 0,

dB3

dt
− αB3 +

γ − 1

γ
π̃∗
q1E

Q[Jv,Q] +
1

γ
EP

[(
π̃∗
q1J

v,P + 1
)1−γ

eγ(B1+B3β0)Jv,P − 1
]
= 0,
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with A(T ) = B1(T ) = B2(T ) = B3(T ) = 0.

Proof. See Appendix B.

It is interesting to note that the indirect value function J(t,Wt, Xt) is independent of

the maturities τ1, τ2 and τ3 of the three variance swaps because the functions A(t), B(t) =

(B1(t), B2(t))
⊤ and B3(t) do not depend on the three maturities. This can be seen from

the above ordinary differential equations satisfied by the for function. In other words, for a

CRRA investor, as long as there are three different variance swaps for trading, the maturities

of variance swap are irrelevant for her investment performance measured by the indirect value

function. This conclusion also holds true in the pure-diffusion model in Egloff, Leippold and

Wu (2010) as shown in their Proposition 3. In essence, any two variance swaps with different

maturities can span two diffusions in the two-factor pure-diffusion model Egloff, Leippold

and Wu (2010) while, as indicated by the nonsingular matrix Σ below, any three variance

swaps with different maturities can span the three sources of risk in variance swap rate. In

contrast, the optimal portfolio weights depend on the maturities of three variance swaps

shown below. To this purpose, we let

Σ =


ϕv(τ1)σv

√
vt ϕm(τ1)σm

√
mt ϕv(τ1) + β0ϕλ(τ1)

ϕv(τ2)σv
√
vt ϕm(τ2)σm

√
mt ϕv(τ2) + β0ϕλ(τ2)

ϕv(τ3)σv
√
vt ϕm(τ3)σm

√
mt ϕv(τ3) + β0ϕλ(τ3)


In general, the above matrix is nonsingular and thus a third variance swap is not redundant

in our model since we disconnect the jump intensity from the variance. In the model of

Aı̈t-Sahalia, Karaman and Mancini (2015), according to their equations (8) and (9), the

corresponding matrix can represented as

Σ1 =


ϕv(τ1)σv

√
vt ϕm(τ1)σm

√
mt λ1[(µ

Q
j )

2 + σ2
j ]ϕv(τ1)

ϕv(τ2)σv
√
vt ϕm(τ2)σm

√
mt λ1[(µ

Q
j )

2 + σ2
j ]ϕv(τ2)

ϕv(τ3)σv
√
vt ϕm(τ3)σm

√
mt λ1[(µ

Q
j )

2 + σ2
j ]ϕv(τ3)


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Clearly, the the matrix Σ1 is singular because its first and third columns are proportional

and this, in turn, implies that the third variance swap is redundant. Thus, variance swaps

cannot provide independent exposures to two diffusions and one jump, making it difficult to

obtain analytic solution to optimal portfolio choice problem involving variance swap. The

next result presents the optimal solution for w1t, w2t and w3t in our model.

Proposition 4 The optimal portfolio weight w∗ = (w∗
1t, w

∗
2t, w

∗
3t) is given by

w∗ =
(
π̃∗
b1, π̃

∗
b2, π̃

∗
q1

)
Σ−1 (15)

where

π̃∗
b1 =

γ2
√
vt

γ
+ σv

√
vtB1(t), π̃

∗
b2 =

γ3
√
mt

γ
+ σm

√
mtB2(t),

and π̃∗
q1 solves the following optimization problem:

sup
π̃q1∈[0,∞)

−π̃q1EQ[Jv,Q] +
1

1− γ
EP

[(
1 + π̃q1J

v,P
)1−γ

eγ(B1+B3β0)Jv,P − 1
]
. (16)

Proof. See Appendix B.

3.4 Model Performance

Before analyzing the decision of variance swap investments, we first study the performance of

four models, including the model investigated by Pan (2002) (termed the “JP” model), the

model examined by Egloff, Leippold and Wu (2010) (or the “ELW” model) and the model

studied by Aı̈t-Sahalia, Karaman and Mancini (2015) (or the “AKM” model) as well as our

model with a self-exciting process for the jump intensity (or the “HJ” model). Both the term

structure of variance swap rates and the dynamics of risk premia of risk components over

time are then numerically studied. We further investigate the optimal allocations to variance

swap contracts in these models, and quantify the losses of economic welfare in investment

decisions due to both model mis-specification and parameter mis-specification.
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3.4.1 Model Parameters

In order to obtain a comprehensive understanding on the model performance, we use the

empirical variance swap rates collected by Aı̈t-Sahalia, Karaman and Mancini (2015), as

reported in Table 1. Note that the variance swap rate mean in each maturity category is

quoted in volatility percentage units, which is ignored for simplicity unless it is specified.

Moreover, all the parameters used for the performance analysis are partially based on the

empirical studies conducted by Egloff, Leippold and Wu (2010) and Aı̈t-Sahalia, Karaman

and Mancini (2015). To highlight the economic role of jumps in either price or volatility with

the framework of the two-factor pure-diffusion model in Egloff, Leippold and Wu (2010), we

calibrate all the four models to the empirical term structure of variance swap rates reported

in Table 1, and then refer to the ELW model as the benchmark.

Time to Maturity

Statistics 2 3 6 12 24

Mean 22.14 22.32 22.87 23.44 23.93

Std 8.18 7.81 7.40 6.88 6.48

Skew 1.53 1.32 1.10 0.80 0.57

Kurt 7.08 6.05 4.97 3.77 2.92

Table 1: Summary Statistics of Variance Swap Rates. All the variance swap rates are from
Table 1 in Aı̈t-Sahalia, Karaman and Mancini (2015). The sample period is from January 4, 1996
to September 2, 2010. The descriptive statistics, including mean, stand deviation (Std), skewness
(Skew) and kurtosis (Kurt), are reported, while the variance swap rate mean in each maturity
category is quoted in percentage, and time to maturities are quoted in months.

More specifically, we first obtain the mean term structure of variance swap rates under

the objective probability measure P by taking the unconditional expectation as follows:

EP
ELW [V St,t+τ ] = (1− ϕELW

v (τ)− ϕELW
m (τ))θQm + ϕELW

v (τ)θPv + ϕELW
m (τ)θPm,

EP
AKM [V St,t+τ ] = (1 + λ1E

Q
t [(J

s,Q)2])(1− ϕAKM
v (τ)− ϕAKM

m (τ))θQm + EQ
t [(J

s,Q)2]λ0

+ (1 + λ1E
Q
t [(J

s,Q)2])ϕAKM
v (τ)θPv + (1 + λ1E

Q
t [(J

s,Q)2])ϕAKM
m (τ)θPm̃,

EP
HJ [V St,t+τ ] = (1− ϕHJ

v (τ)− ϕHJ
m (τ))θQm + ϕ0

λ(τ)λ∞ + ϕHJ
v (τ)θPv + ϕHJ

m (τ)θPm

+ ϕHJ
λ (τ)θPλ ,

(17)
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in which the mean term structure in the ELW model is a weighted average of the statistical

mean of the instantaneous variance rate, θPv , the statistical mean of the central tendency

factor, θPm (θPm̃ instead in the AKMmodel where m̃ = (κQv mt+µ
Q
v λ0)/κ̃

Q
v and κ̃Qv = κQv −µQ

v λ1),

and the common risk-neutral (unconditional) long-term mean for both the variance rate vt

and the central tendency mt, θ
Q
m. In addition to these three factors, the constant jump

intensity λ0 is counted in the AKM model, while both the risk-neutral long-term mean of

the jump intensity, λ∞ and the statistical intensity mean of the jump factor, θPλ are taken

into account in the HJ model. In particular, if λ0 = λ1 = α = λ∞ = β0 ≡ 0, the jumps in

both models vanish, and both models then converge to the ELW model proposed by Egloff,

Leippold and Wu (2010) with no jump components. Also, as suggested by Aı̈t-Sahalia,

Karaman and Mancini (2015), the JP model can be regarded as a special case of the AKM

model when both µQ
v and µP

v are set as zero (i.e., µQ
v = µP

v ≡ 0), but the intensity of jumps

employs the same function of variance.

Following the results in Egloff, Leippold and Wu (2010) and Aı̈t-Sahalia, Karaman and

Mancini (2015), the analytical formulas of the long-term statistical means, θPv and θPλ are

given as follows:

θPv =


κQ
v θPm+λ0µP

v

κP
v −λ1µP

v
, for ELW, JP and AKM Model,

κQ
v θPm
κP
v

+ αλ∞µP
v

κP
v (α−β0µP

v )
, for HJ Model,

θPλ =
αλ∞

α− β0µP
v

, for HJ Model,

(18)

while θPm = θQmκ
Q
m/κ

P
m and θPm̃ = (κQv θ

P
m + µQ

v λ0)/κ̃
Q
v .

9

Moreover, the factor loadings for both the instantaneous variance rate and the central

tendency (ϕv and ϕm) are given in Equation (11). Note that both factor loadings in the AKM

model are calculated using a new presentation of κ̃Qv , and those factor loadings relevant to

the jump risk in the HJ model are given in Equation (11). Also, we may obtain all the

required weight coefficients of risk components in the JP model by using κ̃Qv with µQ
v = 0

9Following the similar steps in Section 3.2, these formulas can be obtained by taking limits on the time-t
expectations of v and λ under the measure P in these models, respectively. The values of λ0 and λ1 in the
ELW model are set as zero and µP

v is equal to zero in the JP model.
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defined in the AKM model.

Panel I: parameters for diffusion components in ELW, JP, AKM and HJ Model

Parameters ELW JP AKM HJ Parameters ELW JP AKM HJ

κP
v 5.060 4.803 5.340 5.340 κP

m 0.221 0.234 0.491 0.491

σv 0.525 0.419 0.394 0.394 σm 0.154 0.141 0.167 0.167

θPm 0.054 0.043 0.038 0.038 γ2 -1.229 -2.518 -1.964 -2.207

γ3 -0.704 -0.346 -0.615 -0.239

Panel II: parameters for jump components in ELW, JP, AKM and HJ Model

Parameters ELW JP AKM HJ Parameters ELW JP AKM HJ

λ0 - 4.794 0.176 - µQ
j - -0.001 -0.012 -0.012

λ1 - 114.587 177.715 - σj - 0.038 0.043 0.043

α - - - 2.472 µP
v - 0 0.001 0.001

λ∞ - - - 5.291 µQ
v - 0 0.002 0.002

β0 - - - 470.276

Table 2: Model Parameters. All the parameters are based on the empirical results in Egloff,
Leippold and Wu (2010) and Aı̈t-Sahalia, Karaman and Mancini (2015). All the four models, in-
cluding the ELW, JP, AKM and HJ model, are re-calibrated to the empirical mean term structure
of variance swap rates with five typical maturities (including 2-, 3-, 6-, 12- and 24-month to ma-
turity), as reported in Table 1, and this procedure then results in the RMSEs defined in Equation
(19) with 0.0858, 0.0210, 0.0230 and 0.0199, respectively, as reported in .

After specifying the term structure of variance swap rates in all the four models presented

in Equation (17), we then conduct the model calibration to the empirical term structure of

variance swap rates reported in Table 1 by minimizing the root mean-squared errors (RMSEs)

as follows:

RMSE(Θ; i) =

√∑N
j=1(E

P
i [V St,t+τj |Θ]− EP

Market[V St,t+τj |Θ])2

N
, (19)

for i ∈ {ELW, JP,AKM,HJ}, and Θ denotes the set of model parameters, and N = 5

indicates the total number of the time-to-maturities of variance swap contracts in the market.

More specifically, we fix those parameters with small standard errors reported in Aı̈t-Sahalia,

Karaman and Mancini (2015), and estimate those parameters with large standard errors by

calibrating to the empirical mean term structure of variance swap rates reported in Table

1. Following such a procedure, we finally obtain all the required parameters, as reported
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in Table 2. It shows that the market prices of both the instantaneous variance and the

central tendency factor, γ2 and γ3 are negative, despite moderate differences in absolute

magnitude. In particular, the highly negative market price of variance risk (γ2) is confirmed

by several studies (see Bakshi and Kapadia (2003), Bondarenko (2004), Carr and Wu (2009)

and Todorov (2009) among others).

Also, the negative market prices make the statistical mean-reverting speeds (κP ) larger

and the statistical long-run means (θPm) smaller than their risk-neutral counterparts (κQ and

θQm respectively) in all the four models. Linking back to Equation (17), the three long-term

means then show the order of θQm > θPm > θPv in each model, while each of them presents

a declining pattern across models duo to the introduction of jumps in variance rate, as

suggested in Table 2. Moreover, since the risk neutral mean of the variance jump size is

larger than the statistical mean in the AKM and HJ model, i.e., µQ
v = 0.002 > µP

v = 0.001,

this indicates a negative variance risk premium in variance swap rate defined in Equation

(12).

3.4.2 Term Structure of Variance Swap Rates

As suggested in Equation (17), the loading coefficients measure the magnitude of the con-

temporaneous responses of the variance swap term structure towards unit shocks on risk

components (e.g., variance, central tendency and jump). Figure 1 plots the term structure

of all risk responses. Among all the four models, the variance risk factor vt has a transient

and dominant contribution (in terms of weight) on the mean term structure of the vari-

ance swap rates at short maturities, and such influence gradually declines over maturities,

provided that its risk loading coefficient is a monotonically decreasing function of time to

maturity. Compared with the other three models, the AKM model puts the highest weights

on the volatility factor in the short term. This results from the more contributions made by

jumps to capture price variance driven by the large estimator λ1, and such contributions are

eventually reflected by the jump-adjusted weights on the volatility factor due to its specifi-

cation of the jump intensity that is a function of variance. Accordingly, the similar pattern

of the factor loading on vt can be observed in the JP model.
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Figure 1: Factor Loadings of Risk Components. The contemporaneous response of the
variance swap term structure to unit shocks on the instantaneous variance rate vt (denoted by the
solid line), the central tendency factor mt (denoted by the dashed line) and the jump risk factor λt

(denoted by the solid line with “+” in the HJ model), while the loading on the long-term mean of
the central tendency (θQ) is represented by the dotted line with “x”. The responses of other risk
factors are denoted accordingly (e.g., ϕλ0 in the JP and AKM model and ϕλ∞ in the HJ model),
but they collapse onto the horizontal axis due to their small values.

In contrast, the impact of the central tendency factor mt is mainly governed by ϕm which

is persistent and substantial over time in order to construct an upward-sloping mean term

structure. The increasing coefficients of mt in the ELW and JP model, associated with their

relatively large magnitudes, shows that the influence of the central tendency factor intensifies

progressively with the increasing of maturity since inception, especially in the presence of

jumps in price. Furthermore, if jumps in variance are allowed in both the AKM and HJ

model, the coefficients of mt increase steadily till the medium term and then turn down

gradually afterwards, suggesting the declining contemporaneous contributions towards the

term structure of variance swap rates. Moreover, the weight of the risk-neutral long-term
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mean θQ (a constant) monotonically grows as the maturity of variance swap increases in all

models as an additional adjustment, which is helpful to mitigate the derivation of variance

rates in the long term.

It is distinguishable in both the AKM and HJ model about the manner that the jump

risk factor (λt) contributes to the responses of the variance swap term structure. Compared

to the ELW model, the specification of the jump intensity in the AKM model suggests that

the contribution of the jump factor is decomposed into two components: the weight function

ϕλ0 and the weight adjustments on other factors (e.g., vt, mt and θQ) that result in the

substantial upward shifts in the coefficients of vt, mt and θ
Q. On the other hand, the self-

exciting specification of the jump intensity in the HJ model suggests that the contribution

of the jump component is characterized only by two factors: λ∞ with the weight function

ϕλ∞ and λt with ϕλ, independent of those risk factors associated with diffusion components.

Nevertheless, the values of these two weight functions are relatively small due to the nature

of jumps.

Associated with the specifications of the response functions of the risk factors discussed

above, we then follow the procedure proposed in Section 3.4.1 to estimate the mean term

structure of variance swap rates. As reported in Panel A of Figure 3, the variance swap rates

with maturity up to two years fall into a range of [21%, 24%] in terms of volatility percentage

units.10 This upward-sloping term structure is certainly consistent with the negative market

prices (γ2 and γ3) given in Table 2. It seems that the four models are calibrated to the

empirical term structure of variance swap rates quite well, and that the HJ model achieves

the best calibration with the minimum RMSE of less than 2% (also see Table 2). In light of

pricing performance, the JP, AKM and HJ model outperform the ELW model due to very

small pricing errors. They even well calibrate to the variance swap rate means at medium

and long maturities (e.g., τ = 6, 12, 24 months), while the ELW model always tend to

overestimate variance swap rates at short-term and long-term maturities and underestimate

them at medium-term maturities. Moreover, those small pricing errors produced by the

JP, AKM and HJ model indicate that these three models can achieve the nearly equivalent

10The time-to-maturities include τ = 1, 2, 3, 6, 12, 15, 18, 21, 24 months.
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pricing performance for variance swap contracts. More importantly, this further implies that

jumps in price or variance or both do play a crucial role in pricing variance swaps.

3.4.3 Term Structure of Variance Swap Risk Premia
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Figure 2: Risk Premium Components in Variance Swap Rates. Following the left-to-
right order in each row, the first three panels present the market prices of three risk factors (e.g.,
W1, W2 and J) in the ELW, JP, AKM and HJ model, respectively, while the fourth panel plots the
dynamics of the risk premia that are compensated in total for these risk factors over maturity.

We further investigate the term structure of variance swap risk premia generated by the

four models. Since the variance swap rate V St,t+τ is a martingale under the measure Q, its

associated risk premium that investors would like to pay is then characterized by the drift

term of the variance rate dynamics under the measure P , as suggested in Equation (12). In

particular, the drift term of the variance rate dynamics in Equation (12) is general in the

sense that the ELW, JP and AKM model can be regarded as the special cases by setting

λt ≡ 0 for the ELW model and β0 = 0 and λt = (λ0 + λ1vt) for the AKM model, while for
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the JP model, an extra restriction of µQ
v = µP

v = 0 need be imposed, apart from the those

requirements in the AKM model. Then the term structure of variance swap risk premia can

be obtained by taking the expectation on the variance rate dynamics in Equation (12) under

the measure P after compensating for the jump shocks accordingly.

Figure 2 plots the term structure of the risk premium compensated for each individual

risk factor, while the price jump premium to a variance swap is equal to zero in the ELW and

JP model. More specifically, the upward-sloping term structures of volatility risk premium

in all models are presented in the first column, suggesting that risk-averse investors prefer

not only to pay a large premium (consistent with the high variance swap rates in Panel A of

Figure 3; namely, larger than 21%) but also to take a large expected loss (the relatively high

and negative variance risk premium in this column; namely, less than 4%) in short maturities

in order to insure against volatility risk. In contrast, the downward-sloping structure of risk

premium against stochastic central tendency is reported in the second column, indicating

that investors would like to pay an extra premium, despite of its relatively smaller absolute

magnitude (less than 0.4%), in order to mitigate uncertainty in central tendency as maturity

increases. In addition to the risk premia compensated for variance risk and central tendency,

a negative and substantial premium (less than 1.2%) need be counted for variance jump

risk, as reported in the third column, which further leads to a downward shift in the term

structure of variance swap risk premia. As a result, the sum of the risk premia compensated

for three risk factors reported in the first three columns is sequentially reported in the final

column.

Panel B in Figure 3 represents the term structure of risk prima plotted in the final

column in Figure 2 with more details. It is clearly that less risk premium need be paid by

investors in the ELW model, particularly in short maturities, due to no premium for jump

risk, which could make a variance swap more affordable. After introducing jumps in price

and variance, an extra premium is required to compensate jump risk, for example, in the

JP, AKM and HJ model. On the one hand, the specification of the jump intensity that is

a function of instantaneous variance in the JP and AKM model implies that high volatility

in short maturities drives up demands for high volatility risk compensations in short term,
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as suggested in Figure 2. On the other hand, this specification further suggests that due to

jumps in variance in the AKM model the premium for the central tendency risk factor also

rises as maturity increases in order to mitigate uncertainty in central tendency.11This then

makes a variance swap more expensive. Consequently, the total risk premiums in the JP and

HJ model are higher than those in the ELW model, but lower than those in the AKM model,

despite their very close pricing performance. Interestingly, the term structure of variance

swap risk premia in both models nearly coincides with each other with mean −0.0076 and

standard deviation 1.28%.

3.5 Numerical Analysis of Variance Swap Investments

The preceding analysis suggests that the JP, AKM and HJ model can be calibrated to the

empirical mean term structure of variance swap rates quite well, but less risk premia are

required in the HJ model, as suggested in Figure 3. This then indicates that the JP and

HJ model can be regarded as good alternatives for the AKM in terms of valuing variance

swap rate contracts. However, it is unclear how the absence of jumps in variance may affect

investor’s decisions on variance swap investment. Since the AKM model does not provide an

analytical solution to the problem of variance swap allocation, we mainly consider the other

three models (namely, the ELW, JP and HJ model) in this section.

Following the theoretical results on optimal allocations in Section 3.3, and the parameters

on the variance swap rate dynamics estimated in Section 3.4.1, we analyze the optimal

allocations to variance swap contracts in the absence of stock index investment, study the

role of jumps in the construction of of variance swap portfolios, and further exam the cost

of economic welfare in investing these contracts due to model mis-specification.

3.5.1 Optimal Variance Swap Allocations

Unlike the stream of literature that attempts to rationalize the magnitude of the risk premium

based on various economic issues, we instead study how a trader allocates her wealth to

11The stochastic variations in variance is captured by a jump factor in price indirectly (in the JP model)
or in variance directly (in the HJ model), which is independent of the central tendency factor.
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variance swap contracts in order to benefit from the risk premium dynamics and further

investigate the impact of jumps in variance on her asset allocations.12 We now assume that

the trader prefers to allocate the initial wealth Wt at time t between the money market and

the variance swap market. The trader has access to the money market account to balance

out the investments by earning a risk-free interest rate. The variance swap contracts are

initialized with zero costs and so they have zero initial values.

In the absence of jumps in variance, as discussed before, the variance swap market is

complete, and its dynamics are driven by a two-factor variance risk structure so that the

values of the variance swap rates across all maturities are determined by two sources of

variations. Accordingly, the trader just need choose any two variance swap contracts with

distinct time to maturities (say 0 < τ1 < τ2 < ∞ without loss of generality), which could

sufficiently span all the sources of risks in the variance swap market. When the investor only

invests in the money market and variance swap contracts, the optimal portfolio weight of

her wealth invested in these two contracts, w∗ = (w∗
1t, w

∗
2t) is equal to w

∗ = (π̃∗
b1, π̃

∗
b2)Σ

−1, as

given in Equation (15) with π̃∗
q1 ≡ 0 (and B3 ≡ 0 in Proposition 3 as well), while the 2 × 2

matrix Σ is given as follows:

Σ =

 ϕv(τ1)σv
√
vt ϕm(τ1)σm

√
mt

ϕv(τ2)σv
√
vt ϕm(τ2)σm

√
mt


and ϕv and ϕm are given in Equation (11), which is equivalent to the formulas in Egloff,

Leippold and Wu (2010)(see Equation (43) and (44) in page 1298). It is clear that these

results are valid in both the ELW and JP model but with distinct parameter sets that are

reported in Table 2. Note that for the JP model, the exposures of the two contracts to the

sources of risk, ϕv and ϕm in the matrix Σ are obtained by setting µQ
v = µP

v = 0 in the AKM

model.

Inspecting the optimal investment decisions in the variance swap contracts under the

12For these issues, see Bates (2008) for path-dependent preferences, Liu, Pan and Wang (2005) and Jin
and Zhang (2012) for ambiguity aversion, Bollen and Whaley (2004) and Gârleanu, Pedersen and Poteshman
(2009) for net-buying and demand pressure, Isaenko (2007) for short-selling constraints and Santa-Clara and
Saretto (2009) for margin requirements among others.
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two-factor variance risk specification (e.g., the ELW and JP model), Egloff, Leippold and

Wu (2010) suggest that the optimal allocations in the two variance swap contracts at short

investment horizons depend not only on the market prices of both the variance risk (γ2) and

the central tendency risk (γ3), but also on the exposures of the two contracts towards the

risk factors, ϕv and ϕm, as suggested by the matrix Σ.

More specifically, investment in the short-term contract is more sensitive to the market

price of the variance risk, while investment in the long-term contract depends more on the

market price of the central tendency risk, owing to the distinct patterns of risk loadings of

these two factors over time. This further implies that the position in the short-term contract

with maturity τ1 is mainly determined by the variance risk price γ2 embedded in this contract

through the diffusion exposure π̃∗
b1, especially when the maturity of the long-term contract is

sufficiently long, τ2 → ∞, leading to the dominating loading on the central tendency factor

(ϕv(τ2) ≪ ϕm(τ2)). In contrast, the position in the long-term contract is mainly determined

by the market price of the central tendency risk (γ3) through the diffusion exposure π̃∗
b1,

if the short-term contract has an extremely short maturity (τ1 → 0), which results in the

dominant risk loading on the variance risk factor (ϕv(τ1) ≫ ϕm(τ1)), as suggested in Figure

1. This can be seen clearly from the portfolio weights w∗ = (π̃∗
b1, π̃

∗
b2)Σ

−1. Considering the

example where τ1 = 2 months and τ2 = 2 years and the ELW model’s parameters are given

in Table 1, the sensitive matrix Σ−1 is given by

Σ−1 =

 13.1570 −4.7567

−5.9110 36.9530

 .

And thus,

w∗ = (13.1570π̃∗
b1 − 5.9110π̃∗

b2,−4.7567π̃∗
b1 + 36.9530π̃∗

b2).

In this case, the investor uses short-term and long-term variance swaps to exploit the risk

premia γ2 through π̃∗
b1 and γ3 through π̃∗

b2, separately, as indicated by the positive numbers

13.1570 and 36.9530. In the meantime, the investor takes positive exposure to the second

Brownian motion in the short-term contract (−5.9110) to offset the negative exposure of
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the long-term contract to the second Brownian motion. For the same reason, the investor

takes positive exposure to the first Brownian motion in the long-term contract (−4.7567) to

offset the negative exposure of the short-term contract to the first Brownian motion. In fact,

negative market prices of the two risk factors result in short positions −0.5271 and −0.9634

in both contracts. Moreover, the trading positions in the two variance swap contracts may

dependent on the relative magnitude of the market prices of the two sources of risk, γ2 and

γ3, as their maturity gap tends to be relatively moderate. Then the optimal allocations could

involve short positions in the short-term variance swap contract, but long positions in the

long-term variance swap contract, if the variance price term γ2 is extremely larger than the

central tendency price term γ3 in absolute value.

Similar to the empirical results in Egloff, Leippold and Wu (2010), Figure 4 shows the

dependence of the optimal variance swap investments on the market prices of the risk factors:

the variance risk and the central tendency risk.13 In the ELW model, the two-factor variance

market suggests that any two variance swap contracts can span all the risk sources. As we

discussed before, Panel A and B show that the optimal investments in the variance swap

contracts involve short positions in the short-term contract and long positions in the long-

term contract when the distance between the two maturities is moderate. Also, Figure 4

suggests that the distance between the two surfaces widens as the difference between the

market prices of risk factors increases, while the smaller maturity difference between the

two contracts may lead to the more holdings of each contract accordingly. Furthermore, the

introduction of jumps in stock prices in the JP model does not cause substantial impact

on the allocations decisions to the variance swap contracts, as the variance market is still

completed and can be spanned by the combinations of any two contracts. Although this

manner may result in the upward shifts in the risk loadings on both the volatility factor

and the central tendency factor, the optimal investment is still determined within the ELW

model. Therefore, jumps in stock prices lead to limited effects on the optimal investment in

13When the market prices of the risk factors vary, unlike the way in Egloff, Leippold and Wu (2010), we
adjust all the estimators under the measure P by fixing the estimators in the measure Q in order to reflect
their impact on the intertemporal hedging demand.
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variance swap contracts, apart from the minor differences in magnitude.14

Furthermore, the presence of jumps in variance then makes the variance swap market

incomplete. Under this circumstance, the dynamics of this market are now driven by a three-

factor variance risk structure due to the three sources of variations. As a result, another

variance swap contract with maturity τ3 is required to span all the sources of variations

in this three-factor model, which leads to the optimal investment as notional in the three

variance swap contracts in terms of the fractions of wealth given in Equation (11). Note that

the choice of variance swap contracts is actually independent from specific maturities, yet

only dependent on the life of each contract, no matter whether the variance swap market is

complete or not.

Figure 5 plots the allocations to variance swap contracts in the presence of jumps in

variance for a 2-month investment horizon. The inclusion of the third contracts further

completes the variance market. However, due to the small estimators for jump sizes in

variance in both the measure P and Q, as reported in Table 2, these values then cause a

linearity problem to the 3×3 matrix, Σ in Equation (15). This then makes its inverse matrix

large and in turn the holdings of each contract are very large as well, as shown in Figure 5.

Similar to the results produced in the ELW model in Figure 4, the trading positions in the

three variance swap contracts depend on the relative magnitudes of the market prices of the

two sources of risk, γ2 and γ3. Also, when the third contract with maturity τ3 is included

in the portfolio, the smaller maturity gap between the two contracts with maturity τ1 and

τ2 may still lead to more holdings on these contracts. Even when the maturity gap between

the two contracts is moderate, the positioning of the third contract may cause substantial

increases in the holdings of these three contracts, for example, as suggested in Panel C and

D of Figure 5.

More importantly, Figure 5 suggests that the optimal investment decision is irrelevant to

the position of the third contract with maturity τ3 in spite of differences in trading volume.

In the presence of jumps in variance, it is always optimal to take long positions in medium-

14We have examined the impact of jumps on variance swap investments, and found that the differences
in the holdings of either the short-term contracts or the long-term contracts are less than 7 in absolute
magnitude value. As a result, the optimal investments in variance swap contracts are not reported here.
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term variance swap contracts and short positions in both short-term and long-term contracts.

Also, the trader should sell even more long-term contracts than short-term ones. For a better

understanding, we rewrite the portfolio weights w∗ = (π̃∗
b1, π̃

∗
b2, π̃

∗
q1)Σ

−1 in the example where

τ1 = 2 months, τ2 = 1 year and τ3 = 2 years, the sensitive matrix Σ−1 is given by

Σ−1 =


77.4910 −359.3994 346.9892

13.8305 −114.1198 197.7839

−1.9143 12.2678 −12.1893

 .

And thus,

w∗
1 = 77.4910π̃∗

b1 + 13.8305π̃∗
b2 − 1.9143π̃∗

q1,

w∗
2 = −359.3994π̃∗

b1 − 114.1198π̃∗
b2 + 12.2678π̃∗

q1,

w∗
3 = 346.9892π̃∗

b1 + 197.7839π̃∗
b2 − 12.1893π̃∗

q1.

We can make the following observations from the above optimal portfolio weights (e.g.,

w∗
1 = −6.6042, w∗

2 = 31.4253 and w∗
3 = −30.9234). First, for each variance swap, the

sensitivity to jump is much smaller in magnitude compared with the sensitivities to the two

diffusion risks. The reason for this is that the value of ϕλ is very small due to small jump

size in variance. Second, for each variance swap, the sensitivity to the variance exposure is

much larger than those to other two exposures in magnitude. Third, the sensitivities to all

the risk factors in the long-term contract are much larger than those in the short-term one

in magnitude. Given the term structure of variance swap risk premia in Panel B of Figure

3, the trader may gain from the unexpected high frequency jumps in variance (governed

by β0 = 470.2764) such that the premiums for medium-term contracts are paid out by the

compensations from short positions in both short-term and long-term contracts.15

Due to the small market price compensated for jump risk, as reported in Table 2, we

then adjust µQ
v by fixing µP

v in order to reflect the sensitivity of optimal investments in

15This then implies that the trader may follow a reverse strategy to maximize her expected utility if
the frequency of jumps in variance is low (governed by a relatively small β0): taking short positions in
medium-term variance swap contracts and long positions in both short-term and long-term contracts.
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variance swap contracts towards jump risk, i.e., µQ
v = µP

v − γJ where γJ is chosen to ensure

the positivity of the long-term jump intensity λt, e.g., µ
Q
v ≤ α/β0. Similar to the results

in Figure 5, Figure 6 suggests that it is still optimal to take long positions in medium-

term contracts, and short positions in both short-term contracts and long-term contracts.

Interestingly, the optimal investments are insensitive to small changes in the market price of

jump risk when it is relatively high, and then turns to be very sensitive when the market price

of jump risk increases up to 0.4%. In particular, when jump risk in variance is compensated

by a low market price, the relatively flat surfaces of the holdings in each contract suggest that

jump risk has minor impact on the allocation to variance swap contracts, and the trader’s

investment decision is mainly affected by variance risk and central tendency risk. However,

jump risk plays a substantial role in investment decision when its mark price turns to be

high. In order to maximize her expected utility in the investment horizon T = 2 months,

the trader then exploits opportunities by rapidly increasing holdings of both medium- and

long-term contracts, as demonstrated in Figure 6.

3.5.2 Optimal Hedging Demands

Proposition 4 shows that the optimal allocation to the variance swap contracts consists of

a myopic component that is the optimal portfolio with a constant opportunity set, and an

intertemporal hedging demand that a trader may ask for to reduce the impact of shocks to

the indirect utility of wealth when facing stochastic opportunities. As a result, the portfolio

rule w∗ = (w∗
1t, w

∗
2t, w

∗
3t) is the sum of the myopic demand and the intertemporal hedging

demand. In this context, the stochastic variance risk (including the central tendency risk)

and jump risk represents those stochastic investment opportunities, which induces induces

an intertemporal hedging demand when we invest in the variance swap contracts alone.

In the literature, the hedging demand for volatility is not significant in a realistic stock-

bond portfolio problem within a stochastic variance environment, as discussed by Buraschi,

Porchia and Trojani (2010). It is necessary to investigate whether this empirical observation

still holds in the context of variance swap investments. For this reason, we may set
∑−1 =

(σ̃i,j) for each variance swap contract j (j = 1, 2, 3) based on Proposition 4, and further
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obtain the following demands on this contract at time t:

Total myopic demand:M =
1

γ
(σ̃1,jγ2

√
vt + σ̃2,jγ3

√
mt);

Hedging demand for vt:Hv = σ̃1,jσv
√
vtB1(t);

Hedging demand for mt:Hm = σ̃2,jσm
√
mtB2(t).

(20)

By virtue of these demands, we may work out the hedging ratios for both the volatility

risk v and the central tendency risk m, reported as the percentages of the myopic portfolio

in Table 3 separately. These ratios clearly show that the intertemporal hedging demands, for

example, for volatility risk and central tendency risk, are indeed significant in the context

of variance swap investments. In particular, the hedging demands for volatility vary from

0.040 to 0.088 when the degree of risk aversion increases from γ = 2 to γ = 40 within the

investment horizon of T = 20 years, while the changes in the hedging demands for the central

tendency risk can be more substantial, ranging from 0.005 to 0.228 when the trader tends

to be more risk averse, indicated by the increasing magnitude from γ = 2 to γ = 40.

Figure 7 plots the total hedging demands for the volatility risk vt and the central tendency

risk mt in terms of the percentages of the myopic portfolio by varying investment horizon

(in the left panel) and relative risk aversion (in the right panel). More specifically, the

sensitivity of the total hedging demands to the investment horizon (T) is consistent to the

empirical results in Buraschi, Porchia and Trojani (2010) in magnitude (e.g., approaching

25% for T = 20 years), but the total hedging demands are more sensitive to the degree of

relative risk aversion (γ), e.g., close to 30% for γ = 40, compared with the empirical results

in Buraschi, Porchia and Trojani (2010) (close to 18% for γ = 40). This may be partially

caused by the unique feature of volatility trading, as in nature the investors are usually risk

averse to volatility.16

16We also re-exam the sensitivities of the results in Table 3 and Figure 7 by varying the parameter
estimators in Table 2 and find these results are robust regarding the changes in parameters.
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3.5.3 Economic Welfare in Variance Swap Investments

Previously, we analyze the optimal allocations to the variance swap contracts when the vari-

ance market is driven by the 2- or 3- factor structural models, respectively. It is interesting

to further investigate the economic costs for the trader who invests heavily in this market if

the dynamics of the variance swap is mis-specified by a 2-factor model (e.g., the ELW model

or the JP model), while the HJ model is the true specification for its dynamics.

We follow the literature to evaluate the economic costs by a certainty equivalent loss

(CE) defined by: The utility cost, CE, of following the suboptimal strategy w = (n1t, n2t)
⊤

satisfies the equation below:

J(t,Wt(1− CE), Xt) = J (1)(t,Wt, Xt),

where J(t,Wt, Xt) is the indirect value of the portfolio choice problem in HJ model given

by Proposition 4 and J (1)(t,Wt, Xt) is the value function provided in Proposition below

corresponding to the the suboptimal strategy w = (n1t, n2t)
⊤ in HJ model. Intuitively, CE

is the percentage of initial wealth an investor is willing to pay to switch from the suboptimal

strategy w to the optimal strategy w∗. The following result presents the calculation of CE.

Proposition 5 Under the above assumptions, we have the following result:

J (1)(t,Wt, Xt) =
W 1−γ

t

1− γ
[f(t,Xt)]

γ =
W 1−γ

1− γ

[
eA

(1)(t)+B
(1)
1 (t)vt+B

(1)
2 (t)mt+B

(1)
3 (t)λt

]γ
(21)

where the functions A(1)(t), B(1)(t) = (B
(1)
1 (t), B

(1)
2 (t))⊤ and B

(1)
3 (t) satisfy the following

equations:

dA(1)

dt
+ κPmθ

P
mB

(1)
2 + αλ∞B

(1)
3 +

1− γ

γ
r = 0,

dB
(1)
1

dt
− [κPv − (1− γ)ψvσ

2
v ]B

(1)
1 +

1

2
γσ2

v

(
B

(1)
1

)2

+
1− γ

γ
σvγ2ψv +

γ − 1

2
ψ2
vσ

2
v = 0,

dB
(1)
2

dt
+ κQv B

(1)
1 − [κPm − (1− γ)ψmσ

2
m]B

(1)
2 +

1

2
γσ2

m

(
B

(1)
2

)2

+
1− γ

γ
σmγ3ψm +

γ − 1

2
ψ2
mσ

2
m = 0,

dB
(1)
3

dt
− αB

(1)
3 +

γ − 1

γ
π̃q1µ

Q
v +

1

γ
EP

[(
π̃q1J

v,P + 1
)1−γ

eγ(B
(1)
1 +B

(1)
3 β0)Jv,P − 1

]
= 0,
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with A(1)(T ) = B
(1)
1 (T ) = B

(1)
2 (T ) = B

(1)
3 (T ) = 0. Here ψv = n1tϕv(τ1) + n2tϕv(τ2) and

ψm = n1tϕm(τ1) + n2tϕm(τ2). The utility cost, CE, of following the suboptimal strategy

w = (n1t, n2t)
⊤ satisfies the equation below:

J(t,Wt(1− CE), Xt) = J (1)(t,Wt, Xt),

and thus

CE = 1−
[
eA

(1)(t)−A(t)+(B
(1)
1 (t)−B1(t))vt+(B

(1)
2 (t)−B2(t))mt+(B

(1)
3 (t)−B3(t))λt

] γ
1−γ

Proof. See Appendix C.

Unlike the indirect value function J(t,Wt, Xt), the above result suggests that the value

function J (1)(t,Wt, Xt) depends on the maturities of the two variance swaps through the

functions A(1)(t), B
(1)
1 (t), B

(1)
2 (t) and B

(1)
3 (t). The economic cost thus depends on the two

maturities. Also, Proposition 5 suggests that the jump risk exposure π̃q1 play a crucial role

in determining the magnitude of CE. It is then necessary to evaluate π̃q1 before numerically

assessing the economic cost of following a suboptimal strategy w.

As well-understood in the literature of portfolio choice problem in jump-diffusion model,

see, e.g., Proposition 1 of Liu, Longstaff and Pan (2003), the investor must restrict her jump

exposure π̃q1 to guarantee that her wealth remains positive when jump occurs. In particular,

π̃q1 satisfies: π̃q1 ≥ 0 since the support of the variance jump size JP
v is [0,∞). As a result,

before presenting the empirical results for CE given by Proposition 5, it is interesting to

examine whether or not the restriction on πq1 is violated by the suboptimal strategy w. The

reason for this is that, as mentioned in Egloff, Leippold and Wu (2010), an investor often

takes an extreme short position in a variance swap due to significantly negative variance risk

premium in variance swap rate, and thus this is very likely to lead violation of the restriction.

Table 4 shows that all the jump exposures π̃q1s caused by the ELW model are negative across

the various investment horizons, suggesting that the trader are subject to the substantial

41



jump risk exposure by ignoring jumps in volatility.17 This table then confirms our concern,

that is, the restriction is overwhelmingly violated by the the suboptimal strategy w, implying

100 percent loss.

To further evaluate the economic costs in the case where the suboptimal strategy w is

feasible in HJ model, we change the support [0,∞) of the variance jump size JP
v into [0, 1].

This means that the variance can jump at most 100 percent, and then the restriction on π̃∗
q1

in the optimization problem in Proposition 4 becomes π̃∗
q1 > −1.18 In the meantime, this

change does not affect the variance swap rate due to the negligible probability P (JP
v > 1).

As a result, Table 5 report the economic costs of switching from a suboptimal strategy w

generated in ELW model or JP model to the optimal strategy w∗ generated in HJ model.

Under a two-factor variance structure, two variance swap contracts would be sufficient

to span the market. As shown in Figure 4, two typical combinations of contracts, one with

the 2-month and 2-year contracts (τ1 = 2/12 and τ2 = 2) and the other with the 6-month

and 1-year contracts (τ1 = 6/12 and τ2 = 1), are used to quantify the economic costs that

the trader has to bear due to model mis-specification. The first panel in Table 5 reports

the economic costs for the trader with γ = 5 with the various investment horizons (T ) by

assuming the rolling-over of the specific variance swap contracts). More specifically, the

economic costs in two combinations of contracts are very close and steadily increasing with

the growth of T , suggesting that the economic costs in both ELW model and JP model

are less dependent on the maturity gap, but sensitive to the length of investment horizon.

Compared with the JP model, the ignorance of jumps in both price returns and variance can

make the ELW model produce relatively higher economic costs when the investment horizon

increases from 6 months to 30 years, implying that incorporating jumps into price returns is

of the first-order importance for variance swap investments.

The second panel in Table 5 further reports the economic costs for the trader with γ = 40.

17The jump exposures caused by the JP model are still negative with the larger absolute magnitude, and
thus they are not reported. Also, we exam the jump exposure π̃q1 of both the ELW and JP model if the
AKM model is assumed to be the true model, and find that all the jump exposures are negative but with
the relatively smaller absolute values, implying the underestimation of the unhedged jump risk.

18This assumption is supported by the dynamics of the CBOE Volatility Index (or VIX) over the past ten
years at http://www.cboe.com/delayedquote/advchart.aspx?ticker=VIX.
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Similar to the case of γ = 5, the economic costs of the contract combinations in both models

are still increasing significantly with the length of the investment horizon (T). Also, the

magnitudes of economic costs shift down overwhelmingly across all investment horizons when

the degree of risk aversion turns to be much higher from γ = 5 to γ = 40. In particular,

the economic cost of each contract combination in JP model is persistently reduced for each

investment horizon (T), compared with those costs reported in the first panel. This seems

to suggest that for the extremely risk-averse trader, the incorporation of jumps into price

returns has little impact on economic costs in the context of asset allocation to variance

swap contracts, compared with those produced by the ELW model with the moderate risk

aversion (e.g., γ = 5). This is caused partially because the extremely high risk aversion

(γ = 40) enforces the trader to make much smaller investments in variance swaps and thus

the impact of jump components in model mis-specification is mitigated to a large extent.

Table 5 has demonstrated the impact of jumps in prices on economic costs caused by

model mis-specification.19 This suggests that it is interesting to further investigate the

impact of jumps on variance on economic costs, given the small estimators of µP
v and µQ

v in

Table 2 that capture jump size in variance under the measure P and Q. Table 6 reports the

economic costs caused by ELW model with a range of jump size in variance for a portfolio of

the 2-month and 2-year variance swap contracts (i.e., τ1 = 2/12, τ2 = 2).20 It clearly shows

that apart from the investment horizon (T ), jumps in variance do have substantial impact

on economic costs when the dynamics of variance is improperly specified. That is, large

jumps in variance can result in high economic costs, which again emphasizes the importance

of incorporating jumps in variance in the context of variance swap investments.

We further investigate the sensitivity of economic costs towards parameter mis-specification

in HJ model. Suppose that one parameter in Table 2 is mis-specified. We then use Proposi-

tion 3 and 4 to obtain the optimal portfolio wight w = (n1t, n2t, n3t). Then, the corresponding

19Given the increasing value of µP
v , we adjust the value of J

v,P accordingly by scaling up a constant µP
v /m0

with m0 = µP
v − exp(−1/µP

v )(1 + µP
v ) to ensure E[Jv,PµP

v /m0] = µP
v for Jv,P ∈ [0, 1].

20We also exam the economic costs caused by ELW model and JP model for a portfolio of the 6-month
and 1-year variance swap contracts (i.e., τ1 = 6/12, τ2 = 1), and obtain the consistent results with those
reported in Table 5 and 6.
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CE is still calculated by Proposition 5 with the following modifications:

ψv = n1tϕv(τ1) + n2tϕv(τ2) + n3tϕv(τ3),

ψm = n1tϕm(τ1) + n2tϕm(τ2) + n3tϕm(τ3),

π̃q1 =
3∑

i=1

nit(ϕv(τi) + β0ϕλ(τi)).

(22)

In the literature, the CE of parameter mis-specification is relatively smaller than the

model mis-specification. But in variance swap investments, it may be different because πq1

can be easily become negative for incorrect parameters, as implied by the preceding analy-

sis.21 Table 7 confirms our concern. It clearly shows that the trader may be easily bankrupt

when the parameter κPv is underestimated, and may suffer economic costs when κPv is over-

estimated. Furthermore, Table 8 suggests that the trader certainly suffers relatively small

economic costs, no matter whether the parameter κPm is underestimated or overestimated.

In both case, the economic costs tend to be large when the investment horizon T increases

from T = 6 months to T = 20 years for a relative low degree of risk-aversion (γ = 2). Recall

in the previous section that the hedging ratios for volatility are significant in the context of

variance swap investments. These results then suggests that the proper estimation strategy

of parameters, for example, µP
v and µP

m among others that capture the dynamics of volatility,

may significantly mitigate the impact of parameter mis-specification so that the trader may

suffer less economic costs when entering into the volatility market.

4 Dynamic asset allocation for stocks, bonds and cash

As a second application of the theoretical results developed in Section 2, we now examine how

jumps in stock return affects the optimal cash-bond-stock mix in a dynamic asset allocation

model where an investor can trade one stock, two bonds and cash. A closely related problem

is the asset allocation puzzle raised in Canner et al. (1997). Namely, the empirical evidence

21We mainly report the economic costs by mis-specifying µP
v and µP

m given their relative large magnitudes
after varying the estimators of the parameters reported in Table 2. To conduct the analysis, we restrict
π̃∗
q1 ≥ 0 in the optimization problem in Proposition 4.
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documented in their paper shows that strategic asset allocation advices tend to recommend a

higher bond/stock ratio for a more risk averse investor. This finding, however, is inconsistent

with the Tobin (1958) Separation Theorem that the ratio of bonds to stocks in the optimal

portfolio is the same for all investors regardless of the investor’s risk aversion.

Bajeux-Besnainou et al. (2001) and Brennan and Xia (2000) relate the puzzle to a hedging

component to a stochastic interest rate and provide an elegant solution to the asset allocation

puzzle. More specifically, as pointed by Lioui (2007), the puzzle can be resolved under the

assumption that one or several bonds can perfectly hedge the risk from the interest rate and

the market price of risk. This approach is extended by Lioui (2007), which demonstrates

that the puzzle may be still a puzzle for a bond market and stochastic market prices of risk if

the hedging assumption is invalid. All of these studies assume that short term interest rate

and stock return follow pure-diffusion processes. Our framework generalizes these studies by

incorporating jumps in stock returns and examining the roles of risk aversion in determining

the optimal cash-bond-stock mix. In particular, we will show that unlike the pure-diffusion

model in Lioui (2007), there is no clear-cut answer to the bond/stock ratio puzzle in a jump-

diffusion model despite the aforementioned hedging assumption. This finding strengthens

the claim made by Lioui (2007) that the asset allocation puzzle is still a puzzle.

Like Lioui (2007), we adopt a two factor Vasicek (1977) term structure model which

is a simplified version of the multi-factor models in Sanjvinatsos and Wachter (2005). We

extend it by adding a jump component in the stock price. The model assumes the following

dynamics under the physical measure P :

r(X(t), t) = δ0 + δ⊤X(t), (23)

dX(t) = K(θ −X(t))dt+ σXdZ(t), (24)

Λ̄(t) = λ̄1 + λ̄2X(t), (25)

dϕ(t)

ϕ(t)
= −r(t)dt− Λ̄(t)⊤dZ(t) (26)

where r(t) is the short term interest rate, X(t) is a 2× 1 vector of state variables, Λ̄(t) is a

price of risk, and ϕ(t) is a pricing kernel, Z(t) = (Z1(t), Z2(t))
⊤ is a standard 2-dimensional
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Brownian motion. δ0 ∈ R, δ ∈ R2×1, K ∈ R2×2, θ ∈ R2×1, σX = (σXij
)1≤i,j≤2 is a 2 × 2

non-singular matrix, λ̄1 ∈ R2×1, λ̄2 ∈ R2×2, all of these parameters are assumed to be

constants.

As indicated by Sanjvinatsos and Wachter (2005), the nominal bond price shall follow

dPi(t)

Pi(t)
= (A2(τi)σXΛ̄(t) + r(t))dt+ A2(τi)σXdZ(t), i = 1, 2, (27)

where τi = Ti−t and Ti denotes the maturity date of bond i, τ1 ̸= τ2. A2(τi) = (A21(τi), A22(τi))

is a 1× 2 row vector for i = 1, 2.

To explain the asset allocation puzzle, Lioui (2007) assumes that only the short rate is

stochastic while the market prices are deterministic. For comparison, we follow Lioui (2007)

to assume that the price of risk Λ̄(t) is a constant vector by setting λ̄2 = 0 and we can

obtain, by equation (A3) of Appendix A in Sanjvinatsos and Wachter (2005), that

A2(τ) = δ⊤K−1(e−Kτ − 1). (28)

Denote the vectors of volatility and risk premia of the two bonds by

σP =

 A2(τ1)σX

A2(τ2)σX

 =

 A2(τ1)

A2(τ2)

σX = A2σX ,

and µP = σP Λ̄(t), respectively. In addition to the two bonds, we assume there exists an

instantaneously riskless money market account with price at time t given by B(t) and one

stock index with price S(t) where B(t) and S(t) satisfy

dB(t)

B(t)
= r(t)dt, (29)

dS(t)

S(t)
= (µS + r(t))dt+ σSdZ(t) + JdN(t)− gPλPdt, (30)
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where µS = σSΛ̄(t) + gPλP − gQλQ; σS = (σS1, σS2); g
P and λP are the expected jump size

and jump intensity under the physical measure P , respectively; gQ and λQ are the expected

jump size and jump intensity under the risk neutral measure Q, respectively. Specifically, µS

is the total risk premium for the stock with the term σSΛ̄(t) compensating for the diffusion

risk while the term gPλP − gQλQ compensating for the jump risk.

This specification implies the two bonds and cash are relatively safer than stock during

a turbulent period when jump occurs. As is well understood, jumps in stock returns have

significant impacts on the optimal portfolio choice. For instance, Liu, Longstaff, and Pan

(2003) demonstrate that, in the presence of jumps in stock returns, an investor is less willing

to take leveraged or short positions than in a standard diffusion model. Furthermore, even

when the chance of a large jump is remote, an investor has strong incentives to significantly

reduce her exposure to the stock market. The reason is that, if a jump occurs, invested wealth

can change significantly from its current value, and such changes cannot be hedged through

continuous rebalancing, resulting in potentially large losses for investors with leveraged or

short positions. In stark contrast, changes in bond prices can be hedged through continuous

rebalancing as they follow pure-diffusion processes. A natural question is: how does a risk

averse investor choose her bond-stock mix when facing uncertain abrupt changes in stock

returns? More concretely, does a more risk averse investor hold more bonds and/or cash than

a less risk averse investor does? To answer these questions, we let π∗
B1, π

∗
B2 and π

∗
S denote the

fractions of the wealth invested in the two bonds and the stock, respectively. And hence, the

remainder πC = 1− π∗
B1 − π∗

B2 − π∗
S is invested in cash. The following proposition presents

a closed-form solution to the optimal strategy.

Proposition 6 The optimal portfolio weight π∗ = (π∗
B1, π

∗
B2, π

∗
S) is given by

(π∗
B1, π

∗
B2) =

[Λ̄(t)′
γ

+
(fX)

′

f
σX

]
σ−1
p − π̃qσSσ

−1
p (31)

π∗
S = π̃∗

q . (32)
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where the function f(t,Xt) is given in Appendix E and π̃∗
q solves the following optimization

problem:

sup
π̃q∈F

π̃q(−gQλQ) +
λP

1− γ

∫
A

(1 + π̃qz)
1−γΦ(dz). (33)

Proof. See Appendix D.

Interestingly, Equation (32) shows that the demand for the stock index has a speculative

component only to gain the risk premium from jumps as suggested by the static optimization

problem for π̃∗
q while burden of hedging interest rate risk and and market price of risk is borne

by the two bonds. It is worth mentioning that this result holds true regardless of whether or

not τ1 = T , namely, the maturity of a bond must coincide with the investment horizon. The

reason for the results in Proposition 6 is that the two bonds span the risk of both interest

rate and market price of risk while only stock span the jump risk. By contrast, the bond

portfolio weights have three components. The first is myopic demand for risk premia of two

diffusion risks; the second is hedging demand to hedge against the risk stemming from the

two diffusion risks; the third one is another myopic demand for jump risk premium. More

specifically, as shown in Appendix E, the first two components are identical to the optimal

weights in the market where the stock is not available for trading. And thus, the third

component determines more or less bonds the investor holds when she can trades the stock.

Although the two bonds are independent from the jumps, the investor can gain the jump

risk premium by investing more in the two bonds. The reason is that the two bonds and the

stock are correlated via diffusion as this can be seen from the term σSσ
−1
p .

To make the intuition behind the results as clear as possible, we concentrate on a simple

case by further assuming that δ0 = 0 and δ⊤ = (1, 1); the jump size J = gP is a negative

constant under the physical measure P ; the state variables X1 and X2 are independent with

σX12 = σX21 = 0, namely, X1 and X2 follow the equations below.

dX1(t) = K1(θ1 −X1(t))dt+ σX11dZ1(t),

dX2(t) = K2(θ2 −X2(t))dt+ σX22dZ2(t),
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where K1 and K2 are positive constants. In this case, by (28), we have

A2i(τ) =
e−Kiτ − 1

Ki

, i = 1, 2.

We further assume that X1 is a permanent state variable with a low K1 while X2 is a

transitory state variable with a high K2. Like Table II in Sanjvinatsos and Wachter (2005),

we let σX11 > 0, σX22 > 0, σS1 < 0, σS2 > 0 and σS1σX11 + σS2σX22 < 0 such that the stock

return is negatively correlated with both state variable X1(t) and interest rate r(t). From

(27), it is easy to check that the bond return and the interest rate has negative correlation

as A21(τ) < 0 and A22(τ) < 0. Furthermore, in order to investigate whether or not the

explanation of Lioui (2007) for the bond/stock ratio puzzle is still valid in our jump-diffusion

model, we assume that the maturity τ1 of the first bond is equal to the investment horizon

T . Then, the optimal portfolio weights in Proposition 7 are given explicitly in the following

result.

Proposition 7 The optimal portfolio weight π∗ = (π∗
B1, π

∗
B2, π

∗
S) is given by

π∗
B1 =

1

γ|A2|

(Λ̄1(t)

σX11

A22(τ2)−
Λ̄2(t)

σX22

A21(τ2)
)
+
(
1− 1

γ

)
−

π̃∗
q

|A2|

( σS1
σX11

A22(τ2)−
σS2
σX22

A21(τ2)
)

(34)

π∗
B2 =

1

γ|A2|

(
− Λ̄1(t)

σX11

A22(τ1) +
Λ̄2(t)

σX22

A21(τ1)
)
−

π̃∗
q

|A2|

(
− σS1
σX11

A22(τ1) +
σS2
σX22

A21(τ1)
)
(35)

π∗
S = π̃∗

q =
1

gP

[(gQλQ
gPλP

)− 1
γ − 1

]
, (36)

where |A2| = A21(τ1)A22(τ1)− A21(τ2)A22(τ1).

Proof. See Appendix D.

The above results suggest that Bond 1 perfectly hedges the interest rate risk, which is
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the same as a pure-diffusion model in Lioui (2007). We can show that |A2| < 0 provided

that K1 < K2 and τ1 < τ2. Using the facts that A21(τ) < 0, A22(τ) < 0 and σS1 < 0, we can

verify that the coefficient of π̃∗
q in Equation (34) is positive while the one in Equation (35)

is negative. In other words, to gain jump risk premium, the investor holds more short term

bond (Bond 1) and less long-term bond (Bond 2) to offset the position in Bond 1. In the

meantime, the total demand for the two bonds due to the jump is positive as we can write

this demand as

−
π̃∗
q

|A2|

[ σS1
σX11

(A22(τ2)− A22(τ1)) +
σS2
σX22

(A21(τ1)− A21(τ2))
]

(37)

and the coefficient of π̃∗
q is positive.

We now turn to the impact of risk aversion coefficient γ on the bond/stock mix. From

Proposition 7, the bond/stock ratio is separated into three terms which correspond to three

parts in the portfolio on the bonds: mean-variance allocation, hedging demand for interest

risk, and myopic demand for jump risk. The second term is actually exploited to explain

the asset allocation puzzle in literature (see e.g. Bajeux-Besnainou, et al. (2001) and Lioui

(2007)). It is interesting to investigate whether the ratio increases with the relative risk

aversion coefficient γ in our model here. To this purpose, we rewrite the total demand for

the two bonds in Proposition 7 as:

π∗
B =

a

γ
+ 1− 1

γ
− bπ̃∗

q ,

with

a =
1

|A2|

[Λ̄1(t)

σX11

(A22(τ2)− A22(τ1)) +
Λ̄2(t)

σX22

(A21(τ1)− A21(τ2))
]
,

b =
1

|A2|

[ σS1
σX11

(A22(τ2)− A22(τ1)) +
σS2
σX22

(A21(τ1)− A21(τ2))
]
.
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And hence, the bond/stock ratio is obtained as:

f(γ) =
π∗
B

π̃∗
q

=

(
a− 1

γ
+ 1

)
1

π̃∗
q

− b,

implying

f ′(γ) =
df(γ)

dγ
=

1

γ2π̃∗
q

[
1− a− 1

gP π̃∗
q

(
a− 1

γ
+ 1

)(gQλQ
gPλP

)− 1
γ
ln
(gQλQ
gPλP

)]
.

It can be seen the function f ′(γ) can be either positive or negative depending on the model

parameters. For instance, we show that it can be negative under certain conditions. For

this, we rewrite f ′(γ) as

f ′(γ) =
1

γ2π̃∗
q

1− a−
(
a− 1

γ
+ 1

) ln
(

gQλQ

gPλP

)
1−

(
gQλQ

gPλP

) 1
γ

 .

Considering the case: 1 ≤ γ ≤ 3 and a > 1, we can show that f ′(γ) < 0 when gQλQ

gPλP > a+2
a−1

,

that is, the jump risk premium is high enough. Therefore, in this case, the ratio
π∗
B

π̃∗
q

is

a decreasing function of γ in the range of [1, 3]. The reason for this is that unlike a pure-

diffusion model, the demand π̃∗
q for the stock is not proportional to 1/γ. In fact, π̃∗

q decreases

slower than 1/γ when γ increases. This is in stark contrast with pure-diffusion model.

Specifically, our jump-diffusion model reduces to a pure-diffusion model by replacing the

jump in stock return with a diffusion Z3(t). Then, the results in Proposition 8 except π∗
S

remain unchanged. In the meantime, π∗
S = C/γ for a positive constant C. As a result,

f(γ) = (a− 1 + γ) 1
C
− b, which is an increasing function of γ. And thus, as in Lioui(2007),

this leads to the resolution of the asset allocation puzzle in the pure-diffusion model. In

short, the rationality of the bond/stock ratio puzzle cannot be explained by the intertemporal

hedging demand in the presence of jumps in the stock return, and thus our jump-diffusion

model provides another channel to strengthen the issue raised by Lioui (2007), that is, the

asset allocation is still a puzzle.

Finally, we investigate the effects of the jump parameters on the cash-bond-stock mix.
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For simplicity, let us consider the jump intensity λP . Note that from (36),

∂π̃∗
q

∂λP
=

1

γgP
(λP )

1
γ
−1
(gQλQ

gP

)− 1
γ
< 0.

Hence, the investor holds less stocks when facing more frequent jumps. In other words, the

investor reduces her position in the stock during a turbulent time of stock market. In the

meantime, she also reduces her bond holding based on the above discussion based on (37).

As a result, the investor holds more cash, reflecting the phenomenon of flight-to-safety.

5 Conclusion

In the present paper, we obtain closed-form solutions the optimal dynamic portfolio selection

problem in multi-asset affine jump-diffusion models where both stock returns and state

variables may exhibit time-varying jumps. More specifically, our closed-form formulas for

the indirect value function and the optimal portfolio weights are in terms of the solutions to

a set of ODEs. Our results extend the pure-diffusion models in Liu (2007) by incorporating

jumps in both stock returns and state variables. Our results also extend those in Jin and

Zhang (2012) by including jumps in state variables in affine jump-diffusion settings and

solving the optimal portfolio choice problem without simulation.

We focus on two application. In the first application, we propose a tractable model to

explicitly solve the optimal investment problem in variance swaps. The second application

shows that unlike in pure-diffusion models, there is no clear-cut answer to the bond/stock

ratio puzzle in a jump-diffusion model despite the hedging assumption.
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Appendix A-D

A Proof of Proposition 1 and Proposition 2

The proof is inspired by the proof of Proposition 1 in Jin and Zhang (2012). In particular, in

exactly the same manner as the one in the proof of Proposition 1 in Jin and Zhang (2012),

we can show that π̃∗
qk is the optimal solution to the problem

max
π̃qk≥0

W 1−γ(f(X, t))γ
(
π̃qk(θ

q
k − λkak) +

λk
1− γ

E
[
(1 + π̃qkY

s
k )

1−γeB(t)σx
JkY

x
k

])
.

By noticing that θqk = θ0kλk and θqk − λkak = (θ0k − ak)λk, the above optimization problem is

is identical to the following problem:

max
π̃qk≥0

(
π̃qk(θ

0
k − ak) +

1

1− γ
E
[
(1 + π̃qkY

s
k )

1−γeB(t)σx
JkY

x
k

])
,

and thus the optimal jump exposure π̃∗
qk is deterministic since there are no state variables

in the above optimization problem. For the optimal diffusion exposure π̃∗
b , from the proof of

Proposition 1 in Jin and Zhang (2012), it is given by

π̃∗⊤
b =

θb

γ
+ ρ⊤t σ

x⊤fX
f

=
θb

γ
+ ρ⊤t σ

x⊤B⊤(t).

Furthermore, according to the proof of Proposition 2 in Jin and Zhang (2012), given the

optimal jump exposures π̃∗
qk, k = 1, ..., n − d, the diffusion exposure vector π̃∗

b solves the

following problem

0 = max
π̃b

{
Jt +

1

2
W 2π̃bπ̃

⊤
b JWW +W (π̃bθ

b + r)JW

+bxJX +Wπ̃bρ
⊤
t σ

x⊤JWX +
1

2
Tr(σxσx⊤JXX⊤) +

n−d∑
k=1

λkDkJ

}
.

Then, substituting the indirect value function J(t,W,Xt) = W 1−γ

1−γ

[
eA(t)+B(t)Xt

]γ
and the

optimal diffusion exposure vector π̃∗
b into the above equation and matching coefficients gives
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the ODEs for the functions A(t) and B(t) specified in Proposition 1, completing the proof.

�

B Proof of Proposition 3 and Proposition 4

We apply Proposition 1 for the proof of Proposition 3. The state variables in this model are

vt, mt and λt. Note that in this case

b− r13 =


ϕv(τ1)σvγ2vt + ϕm(τ1)σmγ3mt − (ϕv(τ1) + β0ϕλ(τ1))µ

Q
v λt

ϕv(τ2)σvγ2vt + ϕm(τ2)σmγ3mt − (ϕv(τ2) + β0ϕλ(τ2))µ
Q
v λt

ϕv(τ3)σvγ2vt + ϕm(τ3)σmγ3mt − (ϕv(τ3) + β0ϕλ(τ3))µ
Q
v λt

 = Σ


γ2
√
vt

γ3
√
mt

−µQ
v λt

 .

Hence

θ =


θb1

θb2

θq1

 = Σ−1(b− r13 + ΣqE
P [Jv,P

t ]λt) =


γ2
√
vt

γ3
√
mt

−(EQ[Jv,P
t ]− EP [Jv,P

t ])λt

 .

By noticing that the state variable λt is a pure-jump process, applying Proposition 1 gives

the following indirect value function:

J(t,Wt, Xt) =
W 1−γ

t

1− γ
[f(t,Xt)]

γ =
W 1−γ

1− γ

[
eA(t)+B1(t)vt+B2(t)mt+B3(t)λt

]γ
(38)

where the functions A(t), B(t) = (B1(t), B2(t))
⊤ and B3(t) satisfy the following equations:

dA

dt
+

(
k +

1− γ

γ
g0

)⊤

B⊤ +
1

2
B[h0 + (1− γ)l0]B

⊤

+
1− γ

2γ2
H0 +

1− γ

γ
δ0 = 0,

dB

dt
+

(
−K +

1− γ

γ
g1

)⊤

B⊤ +
1

2
B[h1 + (1− γ)l1]B

⊤

+
1− γ

2γ2
H1 +

1− γ

γ
δ1 = 0

dB3

dt
− αB3 + (γ − 1)π̃∗

q1E
Q[Jv,Q] + EP

[(
π̃∗
q1J

v,P + 1
)1−γ

eγ(B1+B3β0)Jv,P − 1
]
= 0,
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Furthermore, by noticing that

σx(Xt) =

 σv
√
vt 0

0 σm
√
mt

 ,

we can get the following parameters: k = (0, κPmθ
P
m)

⊤, h111 = (σ2
v , 0), h112 = h121 =

(0, 0), h122 = (0, σ2
m),δ0 = r, δ1 = 0, H0 = 0, H1 = (γ22 , γ

2
3), g0 = 0, l0 = 0, l1 = 0.

K =

 κPv −κQv

0 κPm

 , g1 =

 σvγ2 0

0 σmγ3

 ,

Proposition 3 and Proposition 4 will follow from results in Proposition 1 and Proposition

2. �

C Proof of Proposition 5

We assume that the model ”SV2F-PJ-VJ” in Ait-Sahalia et al. (2015) is the true model and

then evaluate the utility costs of suboptimal strategies based on the models ”SV2F” and

”SV2F-PJ”, respectively. The indirect value function J of the true model ”SV2F-PJ-VJ” is

given in Proposition 3. We now first derive the indirect utility corresponding to the model

”SV2F”. Suppose that the two variance swaps have maturities of τ1 and τ2. Let n1t and n2t

denote the optimal portfolio strategy in the model ”SV2F” which are given by (43) and (44)

in Proposition 4 of Egloff et al. (2010). Consider the corresponding strategy w = (n1t, n2t)
⊤

in the the model ”SV2F-PJ-VJ” and let J (1) denote its indirect utility. Then J (1) satisfies

the equation below

0 = J
(1)
t +

1

2
W 2w⊤Σ

(1)
b (Σ

(1)
b )⊤wJ

(1)
WW +W (w⊤(b− r12) + r)J

(1)
W

+ (bx)⊤J
(1)
X + α(λ∞ − λt)J

(1)
λ +Ww⊤Σ

(1)
b σx⊤J

(1)
WX +

1

2
Tr(σxσx⊤J

(1)

XX⊤)

+ λtE
P
[
J (1)(W

(
π̃q1J

v,P + 1
)
, vt + Jv,P ,mt, λt + β0J

v,P )− J (1)(W, vt,mt, λt)
]
,(39)
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where Xt = (vt,mt)
⊤,

π̃q1 = n1t(ϕv(τ1) + β0ϕλ(τ1)) + n2t(ϕv(τ2) + β0ϕλ(τ2)),

Σ
(1)
b =

 ϕv(τ1)σv
√
vt ϕm(τ1)σm

√
mt

ϕv(τ2)σv
√
vt ϕm(τ2)σm

√
mt



b− r12 =

 ϕv(τ1)σvγ2vt + ϕm(τ1)σmγ3mt − (ϕv(τ1) + β0ϕλ(τ1))µ
Q
v λt

ϕv(τ2)σvγ2vt + ϕm(τ2)σmγ3mt − (ϕv(τ2) + β0ϕλ(τ2))µ
Q
v λt

 .

We guess the following indirect utility function:

J (1)(t,Wt, Xt) =
W 1−γ

t

1− γ
[f (1)(t,Xt)]

γ =
W 1−γ

1− γ

[
eA

(1)(t)+B
(1)
1 (t)vt+B

(1)
2 (t)mt+B

(1)
3 (t)λt

]γ
(40)

By using the same method as in the proof of Proposition 1, substituting the above function

J (1) into the equation (39) gives the ODEs for the functionsA(1)(t), B(1)(t) = (B
(1)
1 (t), B

(1)
2 (t))⊤

and B
(1)
3 (t) in Proposition. Furthermore, the utility cost, CE, of following the suboptimal

strategy w = (n1t, n2t)
⊤ is obtained by applying the formulas of J(t,Wt(1 − CE), Xt) and

J (1)(t,Wt, Xt). �

D Proof of Propositions 6 and 7

We first prove Proposition (6). For portfolio strategy πt = (πB1, πB2, πS)
⊤, the wealth process

is given by

dWt

Wt

= π′(µ− r)dt+ r(t)dt+ π′σdZ(t) + πSJdNt,

56



where

µ =

 µP

µS − gPλP

 , σ =

 σP

σS

 ,

Define Σ = [σ, σJ ] with σJ = (0, 0, 1)⊤. Note that µ can be rewritten as µ − r13 =

Σ(Λ̄1(t), Λ̄2(t),−gQλQ)⊤ and

Σ−1 =

 σ−1
p 02×1

−σSσ−1
p 1

 (41)

Hence, from (4),

(θb1, θ
b
2, θ

q)⊤ = Σ−1(µ− r13 + σJλ
PgP ) = (Λ̄1(t), Λ̄2(t),−λQgQ + λPgP )⊤. (42)

Then we can obtain the optimal portfolio choice problem and its solution by Proposition 4:

(πB1, πB2, πS) = (π̃∗
b1, π̃

∗
b2, π̃

∗
q )Σ

−1 (43)

where (π̃∗
b1, π̃

∗
b2)

⊤ = Λ̄(t)
γ

+ (σX)
′ fX
f
, where f(X) is given by Proposition 1. In particular, π̃∗

q

solves the following optimization problem.

sup
π̃q≥0

−gQλQπ̃q +
λP

1− γ

∫
A

(1 + π̃qz)
1−γΦ(dz). (44)

By Proposition 1, f(t,Xt) can be written as:f(x, t) = eA(t)+B(t)x, where A(t) ∈ R, B(t) ∈

R1×2, A(T ) = 0 and B(T ) = 0. Then it follows that

dA

dt
+

(
k +

1− γ

γ
g0

)⊤

B⊤(t) +
1

2
B(t)h0B

⊤(t)

+
1− γ

2γ2
H0 +

1− γ

γ
δ0 + λP0D = 0,

dB(t)

dt
− K⊤B⊤(t) +

1− γ

γ
δ⊤ = 0,
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where k = Kθ, g0 = σXΛ̄(t)
⊤, h0 = σXσ

⊤
X , H0 = Λ̄(t)Λ̄(t)⊤, and

D =
1− γ

γ

(
−gQλQπ̃∗

q +
λP

1− γ

∫
A

(1 + π̃∗
qz)

1−γΦ(dz)

)
. (45)

Then, by solving the ODE for B(t), we obtain B(t) = (1− 1
γ
)δ′K−1(e−Kτ−1) = (1− 1

γ
)A2(τ).

and hence, (π̃∗
b1, π̃

∗
b2)

⊤ = Λ̄(t)
γ

+ (σX)
′ fX
f

= Λ̄(t)
γ

+ (σX)
′B⊤(t). Therefore,

(πB1, πB2) =
[Λ̄′(t)

γ
+B(t)σX

]
σ−1
p − π̃qσSσ

−1
P (46)

πS = π̃q. (47)

Given the function f , the first term on the right hand side of (46) is the optimal portfolio

weights in the two bonds in the market where the stock is not available for trading.

Hence, using the fact that σ−1
P = σ−1

X A−1
2 , we have B(t)σXσ

−1
P = (1− 1

γ
)A(τ)σXσ

−1
X A−1

2 =

(1− 1
γ
)A2(τ)A

−1
2 , completing the proof of Proposition 6.

We now turn to the proof of Proposition 7. The first-order condition for the optimization

problem (33) is given by

−gQλQ + gPλP (1 + π̃qg
P )−γ = 0,

implying

π̃q =
1

gP

[(gQλQ
gPλP

)− 1
γ − 1

]
.

Given σX12 = σX21 = 0, we have

σ−1
X =

 1
σX11

0

0 1
σX22

 (48)
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An explicit calculation for A−1
2 gives

A−1
2 =

1

|A2|

 A22(τ2) −A22(τ1)

−A21(τ2) A21(τ1)

 (49)

In particular, if the terminal horizon is the same as one of maturity dates, say, τ1 = T , then

A2(τ)A
−1
2 = (1, 0)⊤. Substituting results above into Proposition 6 yields the desired result

in Proposition 7. This completes the proof. �
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Figure 3: Mean Term Structure of Variance Swap Rates and Risk Premia. In the
top panel, the mean term structure of variance swap rates produced by the ELW,JP, AKM and
HJ model is denoted by the dashed line, the dotted line, the solid line and the solid line with “x”,
respectively, while the empirical means of the variance swap rates with the five time-to-maturities
reported in Table 1 are represented by “◦”. In the bottom panel, the term structure of risk premia
in variance swap contracts that are compensated for risk factors in these four models is denoted by
the lines with the same format accordingly. Also, the resulted RMSEs are reported as follows:

Time to Maturity
2 3 6 12 24 RMSE

Empirical Mean 22.14 22.32 22.87 23.44 23.93 -
ELW 22.19 22.37 22.78 23.30 24.00 0.0858
JP 22.11 22.36 22.87 23.43 23.93 0.0210

AKM 22.11 22.36 22.87 23.42 23.94 0.0230
HJ 22.11 22.35 22.87 23.43 23.93 0.0199
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Figure 4: Optimal Investment in Variance Swap Contracts in ELW Model. The
optimal investments in variance swap contracts (as the fractions of total wealth in notional) in the
ELW model (with γ = 5) is plotted as a function of the market price of the variance risk (γ2)
and the market price of the central tendency factor (γ3). Panel A shows the optimal investments
in 2-month and 2-year variance swap contracts, while Panel B shows the investment in 6-month
and 1-year contracts. The surface on the top in each panel denotes the holdings of the long-term
contract with maturity τ2, while the surface on the below shows the holdings of the short-term
contract with maturity τ1. The investment horizon is set as two months (e.g., T = 2 months).
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Figure 5: Optimal Investment in Variance Swap Contracts in HJ Model. The
optimal investments in variance swap contracts (as the fractions of total wealth in notional) in the
HJ model (with γ = 5 and T = 2 months) are plotted as a function of the market price of the
variance risk (γ2) and the market price of the central tendency factor (γ3). When the maturities of
the first two contracts, including the 2-month and 2-year variance swap contract in Panel A and the
6-month and 1-year contract in Panel B, C and D, are specified, the four panels show the optimal
investments in three contracts by positioning the third one with different maturity. In each panel,
the surface on the top denotes the holdings of the medium-term contract, and the surface on the
below shows the holdings of the long-term contract, while the surface in the middle presents the
holdings of the short-term contract.
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Figure 6: Sensitivity of Optimal Investments in Variance Swap Contracts to Jump
Risk in HJ Model. The optimal investment in variance swap contracts (as the fractions of total
wealth in notional) in the HJ model (with γ = 5 and T = 2 months) is plotted as a function of
the market price of the variance risk (γ2), the market price of the central tendency factor (γ3)
and the market price of the jump risk (γJ). Three contracts are traded, including the 2-month,
1-year and 2-year variance swap contract (denoted by τ1, τ2 and τ3 respectively). In each panel, the
surface on the top denotes the holdings of the maturity-τ2 contract (the medium-term contract),
and the surface on the below shows the holdings of the long-term contract with maturity τ3, while
the surface in the middle presents the holdings of the short-term contract with maturity τ1.
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Panel I: Hedging Demands for Volatility (Hv/M)

RRA
Investment Horizon (T) (Year) Myopic Portfolio

0.5 1 5 10 20 (M)

2

0.040 0.043 0.043 0.043 0.043 -15.862

0.039 0.042 0.042 0.042 0.042 75.431

0.038 0.041 0.041 0.041 0.041 -74.193

5

0.066 0.073 0.073 0.073 0.073 -6.345

0.064 0.071 0.071 0.071 0.071 30.172

0.063 0.069 0.070 0.070 0.070 -29.677

40

0.083 0.091 0.092 0.092 0.092 -0.793

0.081 0.089 0.090 0.090 0.090 3.772

0.079 0.087 0.088 0.088 0.088 -3.710

Panel II: Hedging Demands for Central Tendency (Hm/M)

2

0.005 0.010 0.030 0.032 0.033 -15.862

0.010 0.023 0.065 0.071 0.072 75.431

0.014 0.032 0.091 0.099 0.100 -74.193

5

0.008 0.018 0.051 0.057 0.057 -6.345

0.017 0.039 0.112 0.124 0.125 30.172

0.023 0.054 0.157 0.173 0.175 -29.677

40

0.009 0.022 0.066 0.074 0.075 -0.793

0.021 0.048 0.145 0.162 0.164 3.772

0.029 0.067 0.202 0.226 0.228 -3.710

Table 3: Hedging Ratios for Volatility (v) and Central Tendency (m). The hedging ratios
for volatility v and central tendency m are calculated using the hedging demands in Equation (20)
with various risk aversion of the trader: the less risk aversion (γ = 2), the moderate risk aversion
(γ = 5) and the extreme risk aversion (γ = 40). The variance swap contracts with typical maturities
are used, including a set of the 2-month, 1-year and 2-year variance swap contracts. Each entry of
the array in both panels consists of three components: the first of which is the hedging ratio for the
2-month contract (τ1), the second one for the 1-year contract (τ2) and the third one for the 2-year
contract (τ3), respectively.
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Figure 7: Effects of Investment Horizon (T) and Risk Aversion (γ) on Total Hedg-
ing Demand in HJ Model. The total hedging demand for volatility v and central tendency
m, reported as a percentage of the myopic portfolio (e.g., (Hv +Hm)/M), are plotted as a function
of the investment horizon (T) in the left panel and of the risk aversion (γ) in the right panel. In
the left panel, the degree of risk aversion is set as γ = 5, while a fixed investment horizon is set
as T = 5 years in the right panel. The variance swap contracts with typical maturities are used,
including a set of the 2-month, 1-year and 2-year variance swap contracts, represented by V Sτ1 ,
V Sτ2 and V Sτ3 , respectively.

RRA Maturity Pair (Year)
Investment Horizon (T) (Year)

0.5 1 5 10 20 30

γ = 5
(τ1 = 2/12, τ2 = 2) -1.32 -1.35 -1.47 -1.54 -1.60 -1.61

(τ1 = 6/12, τ2 = 1) -1.50 -1.53 -1.69 -1.79 -1.86 -1.88

γ = 40
(τ1 = 2/12, τ2 = 2) -0.17 -0.17 -0.19 -0.21 -0.22 -0.22

(τ1 = 6/12, τ2 = 1) -0.19 -0.19 -0.22 -0.24 -0.26 -0.26

Table 4: Jump Exposure π̃q1 in ELW Model with Different Risk Aversions (γs). The
jump exposures π̃q1 caused by the ELW model due to model mis-specification are presented with
the two risk aversions: the moderate one (γ = 5) and the extreme one (γ = 40), and the HJ model
is assumed to be the true model. The typical maturity pairs of the variance swap contracts are
used, as in Figure 4, including the pair with a long maturity gap (i.e., τ1 = 2/12, τ2 = 2) and the
one with a moderate gap (i.e., τ1 = 6/12, τ2 = 1).
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Panel I: Economic Costs by ELW Model and JP Model for γ = 5

Model Maturity Pair (Year)
Investment Horizon (T) (Year)

0.5 1 5 10 20 30

ELW
(τ1 = 2/12, τ2 = 2) 0.65% 1.29% 5.93% 11.23% 21.01% 29.67%

(τ1 = 6/12, τ2 = 1) 0.56% 1.11% 5.10% 9.73% 18.52% 26.39%

JP
(τ1 = 2/12, τ2 = 2) 0.43% 0.86% 4.23% 8.62% 16.65% 23.55%

(τ1 = 6/12, τ2 = 1) 0.36% 0.72% 3.70% 8.16% 16.47% 23.33%

Panel II: Economic Costs by ELW Model and JP Model for γ = 40

ELW
(τ1 = 2/12, τ2 = 2) 0.54% 1.04% 4.76% 9.22% 17.64% 25.32%

(τ1 = 6/12, τ2 = 1) 0.53% 1.01% 4.66% 9.06% 17.53% 25.31%

JP
(τ1 = 2/12, τ2 = 2) 0.41% 0.78% 3.56% 7.24% 14.64% 21.24%

(τ1 = 6/12, τ2 = 1) 0.22% 0.42% 1.97% 4.55% 11.44% 19.29%

Table 5: Economic Costs by Model Mis-specification. The economic costs caused by the
ELW and JP model due to model mis-specification are presented, when the HJ model is assumed
to be the true model. Also, the economic costs are reported with various risk aversion of the trader:
the moderate risk aversion (γ = 5) and the extreme risk aversion (γ = 40). The typical maturity
pairs of the variance swap contracts are used, as in Figure 4, including the pair with a long maturity
gap (i.e., τ1 = 2/12, τ2 = 2) and the one with a moderate gap (i.e., τ1 = 6/12, τ2 = 1).

T (Year)
Jump Size in Variance (µP

v )

0.001 0.015 0.055 0.095 0.135 0.175

0.5 0.65% 0.67% 0.85% 1.15% 1.64% 2.29%

1 1.29% 1.42% 1.74% 2.33% 3.31% 4.68%

5 5.93% 7.56% 8.96% 11.57% 16.35% 23.87%

10 11.23% 14.84% 17.41% 22.12% 30.80% 44.06%

20 21.01% 27.72% 32.06% 39.65% 52.80% 70.22%

30 29.67% 38.59% 44.04% 53.17% 67.71% 84.03%

Table 6: Economic Costs with Different Jump Sizes in Variance. The economic costs that
a trader with γ = 5 may suffer in ELW model due to model mis-specification are reported with
a range of jump size in variance by fixing µQ

v − µP
v = 0.001. The typical maturity pair of the

variance swap contracts is used, including the 2-month and 2-year variance swap contracts (i.e.,
τ1 = 2/12, τ2 = 2). Note that for each pair of (µP

v , µ
Q
v ), HJ model is re-calibrated to the empirical

mean term structure of variance swap rates reported in Table 1, which results in the RMSEs with
mean 2.31% and standard deviation 0.15%.
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RRA T 4.14 4.54 4.94 5.34 5.74 6.14 6.54

γ = 2

0.5 - - - 0.0000 0.0017 0.0031 0.0041

1.0 - - - 0.0001 0.0035 0.0061 0.0081

5.0 - - - 0.0013 0.0179 0.0309 0.0404

10.0 - - - 0.0017 0.0341 0.0591 0.0771

20.0 - - - 0.0018 0.0643 0.1113 0.1445

γ = 5

0.5 - - - 0.0000 0.0007 0.0013 0.0017

1.0 - - - 0.0001 0.0015 0.0026 0.0035

5.0 - - - 0.0017 0.0090 0.0149 0.0192

10.0 - - - 0.0023 0.0167 0.0281 0.0364

20.0 - - - 0.0024 0.0299 0.0516 0.0674

γ = 40

0.5 - - - 0.0000 0.0001 0.0002 0.0002

1.0 - - - 0.0000 0.0002 0.0003 0.0005

5.0 - - - 0.0004 0.0014 0.0022 0.0028

10.0 - - - 0.0006 0.0025 0.0041 0.0053

20.0 - - - 0.0006 0.0043 0.0073 0.0096

Table 7: Economic Costs by Mis-specifying κPv in HJ Model. The economic costs by mis-
specifying κPv in HJ model are calculated using the notation in Equation (22) with various risk
aversion of the trader: the less risk aversion (γ = 2), the moderate risk aversion (γ = 5) and the
extreme risk aversion (γ = 40). The variance swap contracts with typical maturities are used,
including a set of the 2-month (τ1), 1-year (τ2) and 2-year (τ3) variance swap contracts. The bold
number is the true estimator for κPv reported in Table 2. The symbol of “-” denotes the bankruptcy
of the trader’s trading position due to the negative π̃q1.
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RRA T 0.371 0.411 0.451 0.491 0.531 0.571 0.611

γ = 2

0.5 0.0022 0.0010 0.0002 0.0000 0.0005 0.0018 0.0041

1.0 0.0040 0.0018 0.0004 0.0001 0.0012 0.0041 0.0094

5.0 0.0160 0.0068 0.0014 0.0013 0.0084 0.0254 0.0555

10.0 0.0326 0.0149 0.0035 0.0017 0.0134 0.0440 0.0995

20.0 0.0690 0.0336 0.0089 0.0018 0.0206 0.0753 0.1751

γ = 5

0.5 0.0009 0.0004 0.0001 0.0000 0.0002 0.0008 0.0019

1.0 0.0015 0.0006 0.0001 0.0001 0.0007 0.0021 0.0046

5.0 0.0055 0.0022 0.0007 0.0017 0.0062 0.0161 0.0339

10.0 0.0114 0.0052 0.0017 0.0023 0.0095 0.0269 0.0604

20.0 0.0256 0.0127 0.0039 0.0024 0.0129 0.0425 0.1025

γ = 40

0.5 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003

1.0 0.0002 0.0001 0.0000 0.0000 0.0001 0.0003 0.0007

5.0 0.0006 0.0003 0.0001 0.0004 0.0012 0.0028 0.0058

10.0 0.0013 0.0006 0.0003 0.0006 0.0018 0.0047 0.0107

20.0 0.0030 0.0015 0.0006 0.0006 0.0023 0.0071 0.0179

Table 8: Economic Costs by Mis-specifying κPm in HJ Model. The economic costs by mis-
specifying κPm in HJ model are calculated using the notation in Equation (22) with various risk
aversion of the trader: the less risk aversion (γ = 2), the moderate risk aversion (γ = 5) and the
extreme risk aversion (γ = 40). The variance swap contracts with typical maturities are used,
including a set of the 2-month (τ1), 1-year (τ2) and 2-year (τ3) variance swap contracts. The bold
number is the true estimator for κPm reported in Table 2.
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